已知數(shù)列{an}中,a1=1,an=an-1+3,(n≥2,n∈N*),則an=
 
分析:由題目給出的遞推式得到數(shù)列為等差數(shù)列,結(jié)合已知給出的首項(xiàng),代入等差數(shù)列的通項(xiàng)公式得答案.
解答:解:在數(shù)列{an}中,由an=an-1+3,(n≥2,n∈N*),得
an-an-1=3  (n≥2,n∈N*)
∴數(shù)列{an}是以3為公差的等差數(shù)列,
又a1=1,
∴an=a1+(n-1)d=1+3(n-1)=3n-2.
故答案為:3n-2.
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了等差關(guān)系的確定,考查了等差數(shù)列的通項(xiàng)公式,是中低檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案