函數(shù)f(x)=loga(1-ax)在(1,3)上遞增,則a的取值范圍是( )
A.(0,1)
B.
C.
D.
【答案】分析:先將函數(shù)f(x)=loga(1-ax)轉(zhuǎn)化為y=logat,t=1-ax,兩個(gè)基本函數(shù),再利用復(fù)合函數(shù)求解.
解答:解:解:令y=logat,t=1-ax,
∵a>0
∴t=1-ax在(1,3)上單調(diào)遞減
∵f(x)=loga(1-ax)(a>0a≠1)在區(qū)間(1,3)內(nèi)單調(diào)遞增
∴函y=logat是減函數(shù),且t(x)>0在(1,3)上成立

∴0<a≤
故選D.
點(diǎn)評:本題主要考查復(fù)合函數(shù),關(guān)鍵是分解為兩個(gè)基本函數(shù),利用同增異減的結(jié)論研究其單調(diào)性,再求參數(shù)的范圍.本題容易忽視t=1-ax≥0的情況導(dǎo)致出錯(cuò).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實(shí)數(shù)a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當(dāng)x∈[3,4]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個(gè)命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案