在銳角△ABC中,若C=2B,則
cb
的范圍是
 
分析:由已知C=2B可得A=180°-3B,再由銳角△ABC可得B的范圍,由正弦定理可得,
c
b
=
sinC
sinB
=2cosB
.從而可求
解答:解:因為銳角△ABC中,若C=2B所以A=180°-3B
0°<2B<90°
0°<B<90°
0°<180°-3B<90°

∴30°<B<45°
由正弦定理可得,
c
b
=
sinC
sinB
=2cosB

2
2
<cosB<
3
2

2
c
b
3

故答案為:(
2
,
3
)
點評:本題主要考查了三角形的內(nèi)角和定理,正弦定理在解三角形的應(yīng)用.屬于基礎(chǔ)試題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,若lg (1+sinA)=m,且lg
1
1-sinA
=n,則lgcosA等于( 。
A、
1
2
(m-n)
B、m-n
C、
1
2
(m+
1
n
D、m+
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx+2
3
cos2x-
3
,x∈R

(I)化簡函數(shù)f(x)的解析式,并求函數(shù)f(x)的最小正周期;
(Ⅱ)在銳角△ABC中,若f(A)=1,
AB
AC
=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,若C=2B,則
c
b
的范圍( 。
A、(
2
3
)
B、(
3
,2)
C、(0,2)
D、(
2
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,若a=2,b=3,則邊長c的取值范圍是
5
13
5
,
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函數(shù)f(x)=
m
n
,且f(x)圖象上一個最高點為P(
π
12
,2)
,與P最近的一個最低點的坐標(biāo)為(
12
,-2)

(1)求函數(shù)f(x)的解析式;
(2)設(shè)a為常數(shù),判斷方程f(x)=a在區(qū)間[0,
π
2
]
上的解的個數(shù);
(3)在銳角△ABC中,若cos(
π
3
-B)=1
,求f(A)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案