已知數(shù)列滿足:(其中常數(shù)).
(1)求數(shù)列的通項公式;
(2)當(dāng)時,數(shù)列中是否存在不同的三項組成一個等比數(shù)列;若存在,求出滿足條件的三項,若不存在,說明理由。

(1)
(2)不存在這樣的正整數(shù),使得成等比數(shù)列.

解析試題分析:解:(1)當(dāng)時,,
當(dāng)時,因為
所以:
兩式相減得到:,即,又,
所以數(shù)列的通項公式是
(2)當(dāng)時,,假設(shè)存在成等比數(shù)列,

整理得
由奇偶性知r+t-2s=0.
所以,即,這與矛盾,
故不存在這樣的正整數(shù),使得成等比數(shù)列.
考點:數(shù)列的通項公式,等比數(shù)列
點評:主要是考查了數(shù)列的通項公式以及等比數(shù)列的定義的運用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是公比為q的等比數(shù)列.
(Ⅰ) 推導(dǎo)的前n項和公式;
(Ⅱ) 設(shè)q≠1, 證明數(shù)列不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足),則是否存在這樣的實數(shù)使得為等比數(shù)列;
(3)數(shù)列滿足為數(shù)列的前n項和,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正項數(shù)列項和滿足成等比數(shù)列,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列滿足,),是常數(shù).
(Ⅰ)當(dāng)時,求的值;
(Ⅱ)數(shù)列是否可能為等差數(shù)列?若可能,求出它的通項公式;若不可能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中, .
(Ⅰ)設(shè),求數(shù)列的通項公式;
(Ⅱ)設(shè)求證:是遞增數(shù)列的充分必要條件是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,點在函數(shù)的圖象上,其中
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;
(2)記,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)設(shè)正項數(shù)列的前項和,且滿足.
(Ⅰ)計算的值,猜想的通項公式,并證明你的結(jié)論;
(Ⅱ)設(shè)是數(shù)列的前項和,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知方程tan2x一tan x+1=0在x[0,n)( nN*)內(nèi)所有根的和記為an
(1)寫出an的表達式;(不要求嚴(yán)格的證明)
(2)記Sn = a1 + a2 +…+ an求Sn;
(3)設(shè)bn =(kn一5) ,若對任何nN* 都有anbn,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案