設(shè)x,y∈R,且x+y=4,則3x+3y的最小值是
 
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:根據(jù)不等式3x+3y的≥2
3x+y
=18,求解即可.
解答: 解:∵x,y∈R,且x+y=4,
∴3x+3y的≥2
3x+y
=18,(x=y=2等號成立)
故答案為:18
點評:本題考查了基本不等式的求解問題,屬于中檔題,指數(shù)冪的運算性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司計劃建造一個室內(nèi)面積為800m2的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地,當(dāng)矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)常數(shù)a>0且a≠1,則函數(shù)f(x)=a|x|-|logax|的零點個數(shù)不可能是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)證明函數(shù)y=x+
2
x
在區(qū)間(0,
2
]
為單調(diào)遞減函數(shù);
(2)寫出函數(shù)y=x+
a
x
(a>0)的單調(diào)遞減區(qū)間.(不需要給出證明過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|(a-1)x2+3x-2=0,x∈R}有且僅有兩個不同的子集,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是( 。
A、y=-3x+2
B、y=
3
x
C、y=x2-4x+5
D、y=-3x2+15x-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在(-1,1)上的奇函數(shù),當(dāng)x∈(0,1)時,f(x)=2 x2-2x
(1)求f(x)在(-1,1)上的解析式;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c.若c=
2
,b=
6
,B=120°,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-4=0},集合B={x|x2-x-6=0},全集U={-2,-1,0,2,3}.求A∪B,A∩B,∁UB與∁UB所有子集.

查看答案和解析>>

同步練習(xí)冊答案