在數(shù)列{an}中,a1=2,an+1=4a,-3n+1,n∈N+

(Ⅰ)證明數(shù)列{an-n}是等比數(shù)列;

(Ⅱ)求數(shù)列{an}的通項公式及前n項和Sn

答案:
解析:

  (Ⅰ)證明:由題設an+1=4an-3n+1,得

  an+1-(n+1)=4(an-n),n∈N*  3分

  又a1-1=1

  數(shù)列{an-n}是首項為1,且公比為4的等比數(shù)列  6分

  (Ⅱ)解:由①知:an-n=4n-1

  an=4n-1+n  9分

  Sn=a1+a2+…+an

 。(40+41+41+…4n-1)+(1+2+…+n)

 。  12分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設數(shù)列{
an
n
}的前n項和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a=
12
,前n項和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=a,前n項和Sn構成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個結論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省汕尾市陸豐市碣石中學高三(上)第四次月考數(shù)學試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設數(shù)列{}的前n項和為Tn,證明:

查看答案和解析>>

同步練習冊答案