分析 (1)代值計(jì)算即可,
(2)f(n)的最小值為3,根據(jù)題意證明即可.
解答 解(1)f(7)=11,f(8)=3.
(2)f(n)的最小值為3.
證明如下:3n2+n+1=n(3n+1)+1,由n與3n+1的奇偶性相反,知n(3n+1)+1是大于3的奇數(shù),
從而f(n)≠1;
若f(n)=2,則3n2+n+1只能是首位和末位為1,其余數(shù)字為0,即3n2+n+1=10k+1,
又k=1時(shí),n不存在,從而k≥2.n(3n+1)=2k5k.
由n與3n+1的最大公約數(shù)為1,(若設(shè)n與3n+1有公約數(shù)m,n=pm,3n+1=qm,
其中m,n,p,q∈N*,可得(q-3p)m=1,只有m=1),
所以n=2k,3n+1=5k,但n=2k,3n+1=5k,時(shí)n=2k,3n+1=5k,所以f(n)≠2
又f(8)=3,所以f(n)的最小值為3.
點(diǎn)評(píng) 本題考查了十進(jìn)制的問(wèn)題,以及推理證明,考查了學(xué)生的轉(zhuǎn)化能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,$\frac{1}{4}$) | C. | (-2,$\frac{1}{4}$) | D. | (-∞,-2)∪($\frac{1}{4}$,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com