1.2016年春節(jié)期間,小明和小張去上海旅游,參觀了東方明珠塔,兩人為了測量它的高度,站在A處測得塔尖C的仰角為75.5°,前進38.5m后到達(dá)B處,沒得塔尖C的仰角為80°,如圖所示(其中D為塔底),則東方明珠塔的高度約為(  )(參考數(shù)據(jù):sin80°≈0.985,sin75.5°≈0.968,sin4.5°≈0.078)
A.456mB.438mC.350mD.471m

分析 由已知得∠ACB=4.50,在△ACB中,由正弦定理得BC;在直角△DCB中,CD=sin80°•BC.

解答 解:由已知得∠ACB=4.50 
在△ACB中,由正弦定理得:$\frac{BC}{sin75.{5}^{0}}=\frac{AB}{sin4.{5}^{0}}$⇒BC=$\frac{AB•sin75.{5}^{0}}{sin4.{5}^{0}}$
 在直角△DCB中,CD=sin80°•BC=$\frac{AB•sin75.{5}^{0}}{sin4.{5}^{0}}$•sin80°≈471.
故東方明珠塔的高度約為471m,
故選:D

點評 本題考查了解三角形在實際問題中的應(yīng)用.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列各題:
(1)計算:${({\sqrt{1000}})^{-\frac{2}{3}}}×{({\root{3}{{{{10}^2}}}})^{\frac{9}{2}}}$;             
(2)計算lg20+log10025;
(3)求函數(shù)$f(x)=\sqrt{1-{{log}_2}(4x-5)}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|y=x2},集合B={y|y=x2},則∁AB等于(  )
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知在各項為正的數(shù)列{an}中,a1=1,a2=2,log2an+1+log2an=n(n∈N*),則a1+a2+…+a2016-3×21008=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線x+$\sqrt{3}$y+k=0的傾斜角是(  )
A.$\frac{5}{6}$πB.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.“x+y≠3”是“x≠1或y≠2”的充分不必要條件.(從“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中選擇適當(dāng)?shù)奶顚懀?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.向量$\overrightarrow b=(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,則向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.f(x)=$\frac{\sqrt{lo{g}_{3}(x+2)}}{x-1}$的定義域為[-1,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知{an}為等差數(shù)列,且an≠0,公差d≠0.
(Ⅰ)證明:$\frac{{C}_{2}^{0}}{{a}_{1}}$-$\frac{{C}_{2}^{1}}{{a}_{2}}$+$\frac{{C}_{2}^{2}}{{a}_{3}}$=$\frac{27obyo1s^{2}}{{a}_{1}{a}_{2}{a}_{3}}$
(Ⅱ)根據(jù)下面幾個等式:$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$=$\fracsvl24b4{{a}_{1}{a}_{2}}$;$\frac{{C}_{2}^{0}}{{a}_{1}}$-$\frac{{C}_{2}^{1}}{{a}_{2}}$+$\frac{{C}_{2}^{2}}{{a}_{3}}$=$\frac{2wpjtz4a^{2}}{{a}_{1}{a}_{2}{a}_{3}}$;$\frac{{C}_{3}^{0}}{{a}_{1}}$-$\frac{{C}_{3}^{1}}{{a}_{2}}$+$\frac{{C}_{3}^{2}}{{a}_{3}}$-$\frac{{C}_{3}^{3}}{{a}_{4}}$=$\frac{6jcmja8y^{3}}{{a}_{1}{a}_{2}{a}_{3}{a}_{4}}$

;$\frac{{C}_{4}^{0}}{{a}_{1}}$-$\frac{{C}_{4}^{1}}{{a}_{2}}$+$\frac{{C}_{4}^{2}}{{a}_{3}}$-$\frac{{C}_{4}^{3}}{{a}_{4}}$+$\frac{{C}_{4}^{4}}{{a}_{5}}$=$\frac{249yu5tur^{4}}{{a}_{1}{a}_{2}{a}_{3}{a}_{4}{a}_{5}}$,…
試歸納出更一般的結(jié)論,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊答案