如圖,橢圓的方程為
x2
a2
+
2y2
a2
=1(a>0)
,其右焦點(diǎn)為F,把橢圓的長(zhǎng)軸分成6等分,過(guò)每個(gè)等分點(diǎn)作x軸的垂線交橢圓上半部于點(diǎn)P1,P2,P3,P4,P5五個(gè)點(diǎn),且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5
2

(1)求橢圓的方程;
(2)設(shè)直線l過(guò)F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.
分析:(1)由題意,知P1與P5,P2與P3分別關(guān)于y軸對(duì)稱,設(shè)橢圓的左焦點(diǎn)為F1,從而|P1F|+|P5F|=|P1F|+|P1F1|=2a,|P2F|+|P3F|=2a,|P3F|=a,利用|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5a=5
2
,即可求得橢圓的方程;
(2)設(shè)l的方程為y=k(x-1)(k≠0),代入橢圓方程
x2
2
+y2=1
,利用韋達(dá)定理,確定AB的中點(diǎn)的坐標(biāo),求出線段AB的垂直平分線方程,表示出m,即可確定m的取值范圍.
解答:解:(1)由題意,知P1與P5,P2與P3分別關(guān)于y軸對(duì)稱
設(shè)橢圓的左焦點(diǎn)為F1,則|P1F|+|P5F|=|P1F|+|P1F1|=2a,同時(shí)|P2F|+|P3F|=2a而|P3F|=a
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5a=5
2

∴a=
2

∴橢圓的方程為
x2
2
+y2=1
;
(2)由題意,F(xiàn)(1,0),設(shè)l的方程為y=k(x-1)(k≠0),代入橢圓方程
x2
2
+y2=1

消元整理,得(1+2k2)x2-4k2x+2k2-2=0
設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)為(x0,y0),
x1+x2=
4k2
1+2k2
x0=
1
2
(x1+
x
 
2
)=
2k2
2k2+1
,y0=k(x0-1)=-
k
2k2+1

∴線段AB的垂直平分線方程為y-y0=-
1
k
(x-x0
令y=0,得m=x0+ky0=
2k2
2k2+1
-
k2
2k2+1
=
k2
2k2+1
=
1
2+
1
k2

由于
1
k2
>0
,∴2+
1
k2
>2

∴0<m<
1
2
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的對(duì)稱性,考查韋達(dá)定理的運(yùn)用,求出線段AB的垂直平分線方程是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省聊城市高三上學(xué)期期末考試數(shù)學(xué) 題型:解答題

( 12分)如圖,橢圓的方程為,其右焦點(diǎn)為F,把橢圓的長(zhǎng)軸分成6等分,過(guò)每個(gè)等分點(diǎn)作x軸的垂線交橢圓上半部于點(diǎn)P1,P2,P3,P4,P5五個(gè)點(diǎn),且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5.

 

 

(1)求橢圓的方程;

(2)設(shè)直線l過(guò)F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的方程為數(shù)學(xué)公式,其右焦點(diǎn)為F,把橢圓的長(zhǎng)軸分成6等分,過(guò)每個(gè)等分點(diǎn)作x軸的垂線交橢圓上半部于點(diǎn)P1,P2,P3,P4,P5五個(gè)點(diǎn),且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5數(shù)學(xué)公式
(1)求橢圓的方程;
(2)設(shè)直線l過(guò)F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓的方程為(a>0),其右焦點(diǎn)為F,把橢圓的長(zhǎng)軸分成6等份,過(guò)每個(gè)分點(diǎn)作x軸的垂線交橢圓上半部于點(diǎn)P1、P2、P3、P4、P5五個(gè)點(diǎn),且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=.

(1)求橢圓的方程;

(2)設(shè)直線l過(guò)F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

(文)某廠家擬在2006年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬(wàn)件與年促銷費(fèi)用m萬(wàn)元(m≥0)滿足x=3(k為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬(wàn)件.已知2006年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費(fèi)用).

(1)將2006年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為年促銷費(fèi)用m萬(wàn)元的函數(shù);

(2)該廠家2006年的促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省聊城市五校聯(lián)考高三(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓的方程為,其右焦點(diǎn)為F,把橢圓的長(zhǎng)軸分成6等分,過(guò)每個(gè)等分點(diǎn)作x軸的垂線交橢圓上半部于點(diǎn)P1,P2,P3,P4,P5五個(gè)點(diǎn),且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5
(1)求橢圓的方程;
(2)設(shè)直線l過(guò)F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案