已知P是△ABC所在平面內(nèi)一點,++2=0,現(xiàn)將一粒黃豆隨機撒在△ABC內(nèi),則黃豆落在△PBC內(nèi)的概率是(  )

(A) (B) (C) (D)

 

D

【解析】由題意可知,P位于BC邊的中線的中點處.記黃豆落在△PBC內(nèi)為事件D,P(D)==.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)六十六第十章第三節(jié)練習卷(解析版) 題型:選擇題

(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2++a11(x+2)11,a0+a1+a2++a11的值為(  )

(A)2 (B)-1 (C)-2 (D)1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)六十五第十章第二節(jié)練習卷(解析版) 題型:選擇題

不等式<6×的解集為(  )

(A)[2,8] (B)[2,6]

(C)(7,12) (D){8}

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)六十九第十章第六節(jié)練習卷(解析版) 題型:解答題

已知復數(shù)z=x+yi(x,yR)在復平面上對應的點為M.

(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機取一個數(shù)作為x,從集合Q中隨機取一個數(shù)作為y,求復數(shù)z為純虛數(shù)的概率.

(2)設(shè)x[0,3],y[0,4],求點M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)六十九第十章第六節(jié)練習卷(解析版) 題型:選擇題

扇形AOB的半徑為1,圓心角為90°.C,D,E將弧AB等分成四份.連接OC,OD,OE,從圖中所有的扇形中隨機取出一個,面積恰為的概率是(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)六十七第十章第四節(jié)練習卷(解析版) 題型:填空題

某學校成立了數(shù)學、英語、音樂3個課外興趣小組,3個小組分別有39,32,33個成員,一些成員參加了不止一個小組,具體情況如圖所示.現(xiàn)隨機選取一個成員,他屬于至少2個小組的概率是   ,他屬于不超過2個小組的概率是    .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)六十七第十章第四節(jié)練習卷(解析版) 題型:選擇題

給出以下三個命題:

①將一枚硬幣拋擲兩次,記事件A:兩次都出現(xiàn)正面,事件B:兩次都出現(xiàn)反面,則事件A與事件B是對立事件;②在命題①中,事件A與事件B是互斥事件;③在10件產(chǎn)品中有3件是次品,從中任取3,記事件A:所取3件中最多有2件是次品,事件B:所取3件中至少有2件是次品,則事件A與事件B是互斥事件.其中真命題的個數(shù)是(  )

(A)0 (B)1 (C)2 (D)3

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)六十一第九章第二節(jié)練習卷(解析版) 題型:選擇題

將參加夏令營的600名學生編號為:001,002,,600.采用系統(tǒng)抽樣方法抽取一個容量為50的樣本,且隨機抽得的號碼為003.600名學生分住在三個營區(qū),001300在第Ⅰ營區(qū),301495在第Ⅱ營區(qū),496600在第Ⅲ營區(qū),三個營區(qū)被抽中的人數(shù)依次為(  )

(A)26,16,8 (B)25,17,8

(C)25,16,9 (D)24,17,9

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十四第八章第五節(jié)練習卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0).

(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程.

(2)(1)的條件下,設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

(3)過原點O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1a,b滿足的條件.

 

查看答案和解析>>

同步練習冊答案