已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(Ⅰ)設(shè),試求函數(shù)的表達(dá)式;
(Ⅱ)是否存在,使得、與三點(diǎn)共線.若存在,求出的值;若不存在,請(qǐng)說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對(duì)任意的正整數(shù),在區(qū)間內(nèi)總存在個(gè)實(shí)數(shù),,使得不等式成立,求的最大值.
(Ⅰ)函數(shù)的表達(dá)式為.
(Ⅱ)存在,使得點(diǎn)、與三點(diǎn)共線,且 .
(Ⅲ)的最大值為.
【解析】
試題分析:(Ⅰ)設(shè)、兩點(diǎn)的橫坐標(biāo)分別為、,
,
∴切線的方程為:,
又切線過點(diǎn),
有,即, (1)
同理,由切線也過點(diǎn),得.(2)
由(1)、(2),可得是方程的兩根,
( * )
,
把( * )式代入,得,
因此,函數(shù)的表達(dá)式為.
(Ⅱ)當(dāng)點(diǎn)、與共線時(shí),,
=,即=,
化簡(jiǎn),得,
,. (3)
把(*)式代入(3),解得.
存在,使得點(diǎn)、與三點(diǎn)共線,且 .
(Ⅲ)解法:易知在區(qū)間上為增函數(shù),
,
則.
依題意,不等式對(duì)一切的正整數(shù)恒成立,
,
即對(duì)一切的正整數(shù)恒成立.
,
,
.
由于為正整數(shù),.
又當(dāng)時(shí),存在,,對(duì)所有的滿足條件.
因此,的最大值為.
解法:依題意,當(dāng)區(qū)間的長(zhǎng)度最小時(shí),
得到的最大值,即是所求值.
,長(zhǎng)度最小的區(qū)間為
當(dāng)時(shí),與解法相同分析,得,
解得. 后面解題步驟與解法相同(略).
考點(diǎn):導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極(最)值,不等式恒成立問題。
點(diǎn)評(píng):難題,切線的斜率等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值。不等式恒成立問題,常常轉(zhuǎn)化成求函數(shù)的最值問題。(III)小題,通過構(gòu)造函數(shù),研究函數(shù)的單調(diào)性、極值(最值),進(jìn)一步確定得到參數(shù)的范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(1)求證:為關(guān)于的方程的兩根;
(2)設(shè),求函數(shù)的表達(dá)式;
(3)在(2)的條件下,若在區(qū)間內(nèi)總存在個(gè)實(shí)數(shù)(可以相同),使得不等,則m的最大值,為正整數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(Ⅰ)設(shè),試求函數(shù)的表達(dá)式;
(Ⅱ)是否存在,使得、與三點(diǎn)共線.若存在,求出的值;若不存在,請(qǐng)說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對(duì)任意的正整數(shù),在區(qū)間內(nèi)總存在個(gè)實(shí)數(shù),,使得不等式成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(Ⅰ)設(shè),試求函數(shù)的表達(dá)式;
(Ⅱ)是否存在,使得、與三點(diǎn)共線.若存在,求出的值;若不存在,請(qǐng)說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對(duì)任意的正整數(shù),在區(qū)間內(nèi)總存在個(gè)實(shí)數(shù),,使得不等式成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(Ⅰ)設(shè),試求函數(shù)的表達(dá)式;
(Ⅱ)是否存在,使得、與三點(diǎn)共線.若存在,求出的值;若不存在,請(qǐng)說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對(duì)任意的正整數(shù),在區(qū)間內(nèi)總存在個(gè)實(shí)數(shù),,使得不等式成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省盧氏一高高三適應(yīng)性考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分) 已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(1)求證:為關(guān)于的方程的兩根;
(2)設(shè),求函數(shù)的表達(dá)式;
(3)在(2)的條件下,若在區(qū)間內(nèi)總存在個(gè)實(shí)數(shù)(可以相同),使得不等式成立,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com