函數(shù)f(x)=
2-x
lgx
的定義域是( 。
分析:根據(jù)函數(shù)的結(jié)構(gòu)可以得到限制條件:分母不為零;真數(shù)大于零;被開方式大于等于零三個限制條件,再分別求解取交集即可.
解答:解:要使函數(shù)f(x)有意義,只需要
2-x≥0
x>0
lgx≠0
,
解得0<x<1或1<x≤2,所以定義域為(0,1)∪(1,2].
故選D.
點評:考察函數(shù)定義域的求解,只要掌握住?疾斓男问綄(yīng)的限制方式,求解時再細(xì)心點,這類題的分值就能把握住了.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2-x-1  x≤0
x
1
2
   x>0
,滿足f(x)>1的x的取值范圍是
x<0或x>1
x<0或x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+a

(Ⅰ)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)x∈[-
π
6
,
π
3
]時,函數(shù)f(x)的最大值與最小值的和為
3
2
,求f(x)的解析式;
(Ⅲ)將滿足(Ⅱ)的函數(shù)f(x)的圖象向右平移
π
12
個單位,縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉淼?倍,再向下平移
1
2
,得到函數(shù)g(x),求g(x)圖象與x軸的正半軸、直線x=
π
2
所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的奇函數(shù),且滿足f(x+2)-f(x)=0,當(dāng)x∈[-1,0)時,f(x)=x+2,則當(dāng)x∈[2,3]時,f(x)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
請觀察表中值y隨x值變化的特點,完成以下的問題.
函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間(0,2)上遞減;
函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間
(2,0)
(2,0)
上遞增.
當(dāng)x=
2
2
時,y最小=
4
4

證明:函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間(0,2)遞減.
思考:(直接回答結(jié)果,不需證明)
(1)函數(shù)f(x)=x+
4
x
(x<0)有沒有最值?如果有,請說明是最大值還是最小值,以及取相應(yīng)最值時x的值.
(2)函數(shù)f(x)=ax+
b
x
,(a<0,b<0)在區(qū)間
[-
b
a
,0)
[-
b
a
,0)
 和
(0,
b
a
]
(0,
b
a
]
上單調(diào)遞增.

查看答案和解析>>

同步練習(xí)冊答案