x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
分析 先由導(dǎo)函數(shù)的圖象和原函數(shù)的關(guān)系畫(huà)出原函數(shù)的大致圖象,再借助與圖象和導(dǎo)函數(shù)的圖象,對(duì)四個(gè)命題,一一進(jìn)行驗(yàn)證,對(duì)于假命題采用舉反例的方法進(jìn)行排除即可得到答案.
解答 解:函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如表,
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示:
由導(dǎo)函數(shù)的圖象和原函數(shù)的關(guān)系得,原函數(shù)的大致圖象如圖:
由圖得:∵函數(shù)的定義域?yàn)殚]區(qū)間,而周期函數(shù)的定義域一定是無(wú)界的,
故①為假命題;
②為真命題.因?yàn)樵赱0,2]上導(dǎo)函數(shù)為負(fù),故原函數(shù)遞減;
由已知中y=f′(x)的圖象,及表中數(shù)據(jù)可得當(dāng)x=0或x=4時(shí),
函數(shù)取最大值2,
若x∈[-1,t]時(shí),f(x)的最大值是2,那么0≤t≤5,故t的最大值為5,即③錯(cuò)誤;
∵函數(shù)f(x)在定義域?yàn)閇-1,5]共有兩個(gè)單調(diào)增區(qū)間,兩個(gè)單調(diào)減區(qū)間,
故函數(shù)y=f(x)-a的零點(diǎn)個(gè)數(shù)可能為0、1、2、3、4個(gè),即④錯(cuò)誤,
故選:A.
點(diǎn)評(píng) 本題主要考查導(dǎo)函數(shù)和原函數(shù)的單調(diào)性之間的關(guān)系.二者之間的關(guān)系是:導(dǎo)函數(shù)為正,原函數(shù)遞增;導(dǎo)函數(shù)為負(fù),原函數(shù)遞減,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow a$ | B. | $\overrightarrow b$ | C. | $\overrightarrow c$ | D. | $\overrightarrow a,\overrightarrow b,\overrightarrow c$都不可以 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{5}$ | B. | $\frac{25}{7}$ | C. | $\frac{7}{25}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com