分析:分兩種情況考慮,第一:當所求直線與兩坐標軸的截距不為0時,設出該直線的方程為x+y=a,把已知點坐標代入即可求出a的值,得到直線的方程;第二:當所求直線與兩坐標軸的截距為0時,設該直線的方程為y=kx,把已知點的坐標代入即可求出k的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.
解答:解:①當所求的直線與兩坐標軸的截距不為0時,設該直線的方程為x+y=a,
把(1,1)代入所設的方程得:a=2,則所求直線的方程為x+y=2;
②當所求的直線與兩坐標軸的截距為0時,設該直線的方程為y=kx,
把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.
綜上,所求直線的方程為:x+y=2或y=x.
故答案為:x+y=2或y=x
點評:此題考查直線的一般方程和分類討論的數學思想,要注意對截距為0和不為0分類討論,是一道基礎題.