1.設(shè)Sn是數(shù)列{an}的前n項和,an=4Sn-3,則S2=$\frac{2}{3}$.

分析 在已知數(shù)列遞推式中,分別取n=1,2求得a1,a2,則S2可求.

解答 解:由an=4Sn-3,得a1=4S1-3=4a1-3,得a1=1;
a2=4S2-3=4(a1+a2)-3,得a2=4×1+4a2-3,則${a}_{2}=-\frac{1}{3}$.
∴${S}_{2}={a}_{1}+{a}_{2}=1-\frac{1}{3}=\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點評 本題考查數(shù)列遞推式,考查計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x∈R|log3x<1},B={x∈R|x2≥4},則A∩B=( 。
A.{x|-2≤x<0}B.{x|2<x<3}C.{x|2≤x<3}D.{x|x≤-2或2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合A=(1,3),B={1,2},則A∪B=[1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)是一次函數(shù),若f(f(x))=4x+8,則f(x)的解析式為f(x)=2x+$\frac{8}{3}$,或f(x)=-2x-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若A,B互為對立事件,其概率分別為P(A)=$\frac{4}{x}$,P(B)=$\frac{1}{y}$,且x>0,y>0,則x+y的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線y=x-1的傾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=1-2sin22x是( 。
A.偶函數(shù)且最小正周期為$\frac{π}{2}$B.奇函數(shù)且最小正周期為$\frac{π}{2}$
C.偶函數(shù)且最小正周期為πD.奇函數(shù)且最小正周期為π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow m$=(2sinωx,sinωx),$\overrightarrow n$=(cosωx,-2$\sqrt{3}$sinωx)(ω>0),函數(shù)f(x)=$\overrightarrow m$•$\overrightarrow n$+$\sqrt{3}$,直線x=x1,x=x2是函數(shù)y=f(x)的圖象的任意兩條對稱軸,且|x1-x2|的最小值為$\frac{π}{2}$.
(I)求ω的值;        
(Ⅱ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅲ)若f(a)=$\frac{2}{3}$,求sin(4a+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=$\sqrt{3}$,BC=4.
(1)求證:BD⊥PC;
(2)若PD=4,設(shè)點E在棱PC上,$\overrightarrow{PE}$=$\frac{1}{4}$$\overrightarrow{PC}$,求三棱錐E-PAB的體積.

查看答案和解析>>

同步練習(xí)冊答案