已知函數(shù)f(x)=
1
a
-
1
x
(a>0)

(1)證明f(x)在(0,+∞)上單調(diào)遞增;
(2)若f(x)的定義域、值域都是[
1
2
,2]
,求實數(shù)a的值;
分析:(1)對函數(shù)f(x)求導,根據(jù)導數(shù)大于0即可得證.
(2)由(1)可判斷函數(shù)f(x)在[
1
2
,2]
上是增的,即可得到f(
1
2
)=
1
a
-2=
1
2
,從而得到答案.
解答:解:(1)∵f(x)=
1
a
-
1
x
(a>0)
∴f'(x)=
1
x2
,當x∈(0,+∞)時,f'(x)>0
故函數(shù)f(x)在(0,+∞)上單調(diào)遞增
(2)∵函數(shù)f(x)在(0,+∞)上單調(diào)遞增∴函數(shù)f(x)在[
1
2
,2]
是單調(diào)遞增,
當x=
1
2
時,f(
1
2
)=
1
a
-2=
1
2
a=
2
5
點評:本題主要考查函數(shù)的單調(diào)性與其導函數(shù)的正負之間的關系.屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點;
②?x∈(8,+∞),f(x)>0.
則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實數(shù)a的取值范圍;
(2)當x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習冊答案