分析 ①函數(shù)y=ax(a>0且a≠1)與函數(shù)$y={log_a}{a^x}$(a>0且a≠1)的定義域相同;
②②因?yàn)閗>0,所以存在t∈R,使得k=3t,y=k3x=3x+t(k>0),;
③函數(shù)$y=\frac{1}{2}+\frac{1}{{{2^x}-1}}$(x≠0)是奇函數(shù)且函數(shù)$y=x\;(\frac{1}{{{3^x}-1}}+\frac{1}{2})$(x≠0)是偶函數(shù);
④若x1是函數(shù)f(x)的零點(diǎn),且m<x1<n,則f(m)•f(n)<0
解答 解:對于①,函數(shù)y=ax(a>0且a≠1)與函數(shù)$y={log_a}{a^x}$(a>0且a≠1)的定義域都是R,故正確;
對于②,②因?yàn)閗>0,所以存在t∈R,使得k=3t,y=k3x=3x+t(k>0),故正確;
對于③,函數(shù)$y=\frac{1}{2}+\frac{1}{{{2^x}-1}}$(x≠0)滿足f(x)+f(-x)=0,是奇函數(shù),函數(shù)$y=x\;(\frac{1}{{{3^x}-1}}+\frac{1}{2})$(x≠0)是奇函數(shù)乘以奇函數(shù),是偶函數(shù),故正確;
對于④,若x1是函數(shù)f(x)的零點(diǎn),x1兩側(cè)的函數(shù)值可以同號,則f(m)•f(n)>0,故錯(cuò).
故答案為:①②③.
點(diǎn)評 本題考查了函數(shù)的概念及基本性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com