12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≥x}\\{x+2y≤2}\\{x≥-2}\end{array}\right.$,則z=x-3y的最大值為(  )
A.-2B.4C.-6D.-8

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:作出可行域如圖,
由目標(biāo)函數(shù)得$y=\frac{1}{3}x-\frac{1}{3}z$,
結(jié)合圖象知z在(-2,2)處截距離最大,
z取得最小值-8.
故選D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在無(wú)窮等比數(shù)列{an}中,$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})=\frac{1}{2}$,則a1的取值范圍是( 。
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(0,1)D.$({0,\frac{1}{2}})∪$$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.方程4x-4•2x-5=0的解是( 。
A.x=0或x=log25B.x=-1或x=5C.x=log25D.x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)已知方程x2+(m-3)x+m=0有兩個(gè)不等正實(shí)根,求實(shí)數(shù)m的取值范圍.
(2)不等式(m2-2m-3)x2-(m-3)x-1<0對(duì)任意x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知平面向量$\overrightarrow a,\overrightarrow b$的夾角為$\frac{2π}{3}$,$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,則$|{\overrightarrow a+2\overrightarrow b}|$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.集合P={x|x<2},集合Q={y|y<1},則P與Q的關(guān)系為( 。
A.P⊆QB.Q⊆PC.P=QD.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{{a•{2^x}-2+a}}{{{2^x}+1}},\;\;a∈R$.
(1)試判斷f (x)的單調(diào)性,并證明你的結(jié)論;
(2)若f (x)為定義域上的奇函數(shù),求函數(shù)f (x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若f(x)=2x+3,則f(3)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.向量$\overrightarrow{a}$=(3,4)與向量$\overrightarrow$=(1,0)的夾角大小為arccos$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案