已知角α的終邊在第四象限,且tanα=-
4
3
,則sinα+cosα=
 
考點(diǎn):同角三角函數(shù)間的基本關(guān)系
專題:三角函數(shù)的求值
分析:由同角三角函數(shù)基本關(guān)系式分別求出sinα,cosα再相加即可.
解答: 解:∴tanα=-
4
3
,即
sinα
cosα
=-
4
3
,3sinα=-4cosα.
由于sin2α+cos2α=1,得出cos2α=
9
25
,角α的終邊在第四象限,所以cosα=
3
5
,sinα=-
4
5

所以sinα+cosα=-
4
5
+
3
5
=-
1
5

故答案為:-
1
5
點(diǎn)評(píng):本題考查同角三角函數(shù)基本關(guān)系式的應(yīng)用:三角式求值.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f(|x|)的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|kπ-
π
3
<x<kπ+
π
6
,k∈Z},集合B=[-4,4],則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=
1
log43
+
1
log23
,則9a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos(
π
3
-
x
2
),求該函數(shù)的對(duì)稱軸與對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin2x-2sin2x,y=sin2x的最小正周期為T,則f(T)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四面體ABCD中,面ABC與面BCD成600的二面角,頂點(diǎn)A在面BCD上的射影H是△BCD的垂心,G是△ABC的重心,若AH=4,AB=AC,則GH=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn) (n∈N*)順次為一次函數(shù)y=
1
4
x+
1
12
圖象上的點(diǎn),點(diǎn)列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N*)順次為x軸正半軸上的點(diǎn),其中x1=a(0<a<1),對(duì)任意n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.如果所有的等腰三角形AnBnAn+1中存在等腰直角三角形,則a的取值可以是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地草莓從2月1日開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到草莓的種植成本Q(單位:元/1000kg)與上市時(shí)間t(單位:天,從2月1日開(kāi)始計(jì)算)的數(shù)據(jù)如下表:
上市時(shí)間t50100150
種植成本Q350020005500
(Ⅰ)根據(jù)上表數(shù)據(jù),從下列函數(shù)中(ab≠0)選取一個(gè)函數(shù)描述草莓的種植成本Q與上市時(shí)間t的變化關(guān)系,說(shuō)明選取該函數(shù)的理由,并求出相應(yīng)的解析式.
①Q(mào)=at+b;②Q=at2+bt+c;③Q=abt;④Q=a•logbt.
(Ⅱ)利用你選取的函數(shù),求草莓的種植成本最低時(shí)的上市時(shí)間及最低種植成本.

查看答案和解析>>

同步練習(xí)冊(cè)答案