20.已知函數(shù)f(x)=ex-x+1
(1)求函數(shù)y=f(x)在點(2,f(2))處的切線方程.
(2)求函數(shù)y=f(x)在[-2,1]上的最大值和最小值.

分析 (1)求出函數(shù)的導數(shù),計算f′(2),f(2)的值,求出切線方程即可;
(2)求出函數(shù)的導數(shù),解關于導函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值即可.

解答 解:(1)∵f′(x)=ex-1,
故f′(2)=e2-1,f(2)=e2-1,
故切線方程是:y-(e2-1)=(e2-1)(x-2),
即:(e2-1)x-y-e2+1=0;
(2))∵f′(x)=ex-1,令f′(x)=0,
∴ex-1=0,解得:x=0,
∴f(x)=ex-x的單調(diào)減區(qū)間是(-∞,0),增區(qū)間是[0,+∞);
故f(x)在[-2,0]上單調(diào)遞減,在[0,1]單調(diào)遞增
∴f(x)在x=0處取得極小值,f(0)=2,
而f(-2)=e-2+3>f(1)=e,
f(x)在x=-2處取到最大值,
∴f(x)的最大值e-2+3,最小值2.

點評 本題考查了函數(shù)的單調(diào)性,導數(shù)的應用,求函數(shù)的極值問題,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$+4$\overrightarrow$=0,則( 。
A.|$\overrightarrow{a}$|+4|$\overrightarrow$|=0B.$\overrightarrow{a}$與$\overrightarrow$是相反向量C.$\overrightarrow{a}$與$\overrightarrow$的方向相同D.$\overrightarrow{a}$與$\overrightarrow$的方向相反

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-2ax-alnx$對區(qū)間(1,2)上任意x1,x2(x1≠x2),都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<0$,則a的取值范圍為( 。
A.$({\frac{4}{5},+∞})$B.$[{\frac{4}{5},+∞})$C.$[{\frac{1}{3},+∞})$D.(-∞,1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知x,y的一組數(shù)據(jù)如表所示:
x13678
y12345
(1)從x,y中各取一個數(shù),求x+y≥10的概率:
(2)對于表中數(shù)據(jù),甲、乙兩同學給出的擬合直線分別為$y=\frac{1}{3}x+1$與$y=\frac{1}{2}x+\frac{1}{2}$,試判斷哪條直線擬合程度更好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元)88.28.48.68.89
銷量y(件)908483807568
(1)求回歸直線方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline{y}$-b$\overline{x}$;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)
回歸直線的斜率和截距的最小二乘估計公式分別為$\stackrel{∧}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列結論:①數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$…,的一個通項公式是an=$\sqrt{3n-1}$; ②已知數(shù)列{an},a1=3,a2=6,且an+2=an+1-an,則數(shù)列的第五項為-6; ③在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=450,則a2+a8=180; ④在等差數(shù)列{an}中,a2=1,a4=5,則{an}的前5項和S5=15,其中正確的個數(shù)是(  )
A.2B.3C.4D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知$x={5^{{{log}_2}3.4}}$,$y={5^{{{log}_4}3.6}}$,$z={(\frac{1}{5})^{{{log}_3}0.3}}$,則x,y,z大小關系為( 。
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知tanα=-2
(1)求$\frac{3}{2}$sin2α-2cos2α+3的值;
(2)求$\frac{sin(4π-α)cos(3π+α)cos(\frac{π}{2}+α)cos(\frac{5}{2}π-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{13}{2}π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x-$\frac{1}{2}$ax2-ln(1+x),其中a∈R.
(1)討論f(x)的單調(diào)性;
(2)若f(x)在[0,+∞)上的最大值是0,求a的取值范圍.

查看答案和解析>>

同步練習冊答案