17.已知函數(shù)f(x)在區(qū)間[-5,5]上是偶函數(shù),在區(qū)間[0,5]上是單調(diào)函數(shù),且f(3)<f(1),則(  )
A.f(-1)<f(-3)B.f(0)>f(-1)C.f(-1)<f(1)D.f(-3)<f(-5)

分析 根據(jù)條件判斷函數(shù)的單調(diào)性,進(jìn)行比較即可.

解答 解:∵函數(shù)f(x)在區(qū)間[-5,5]上是偶函數(shù),在區(qū)間[0,5]上是單調(diào)函數(shù),且f(3)<f(1),
∴函數(shù)在[0,5]上是單調(diào)遞減,
則f(0)>f(1),即f(0)>f(-1),
故選:B

點評 本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性的定義和性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)是R上的單調(diào)函數(shù),且對任意實數(shù)x,都有f[f(x)+$\frac{2}{{2}^{x}+1}$]=$\frac{1}{3}$,則f(log23)=(  )
A.1B.$\frac{4}{5}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知中心為坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點;
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于2?若存在求出直線方程;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列判斷正確的是( 。
A.①不是棱柱B.②是圓臺C.③是棱錐D.④是棱臺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=3x2+1,則f[f(1)]的值等于( 。
A.25B.36C.42D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.點P(-1,0)在動直線mx+y+2-m=0(m∈R )上射影為M,則點M到直線x-y=5的距離的最大值是3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若橢圓$\frac{x^2}{k+8}+\frac{y^2}{9}=1$的離心率$e=\frac{1}{3}$,則k的值為0或$\frac{17}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某網(wǎng)絡(luò)營銷部門隨機(jī)抽查了某市200名網(wǎng)友在2013年11月11日的網(wǎng)購金額,所得數(shù)據(jù)如下表:
網(wǎng)購金額(單位:千元)(0,1](1,2](2,3](3,4](4,5](5,6]合計
人數(shù)1624xy1614200
頻率0.080.12pq0.080.071.00
已知網(wǎng)購金額不超過3千元與超過3千元的人數(shù)比恰為3:2.
(1)試確定x,y,p,q的值,并補(bǔ)全頻率分布直方圖(如圖).
(2)該部門為了了解該市網(wǎng)友的購物體驗,從這200網(wǎng)友中,用分層抽樣的方法從網(wǎng)購金額在(1,2]和(4,5]的兩個群體中確定5人進(jìn)行問卷調(diào)查,若需從這5人中隨機(jī)選取2人繼續(xù)訪談.
①求此2人來自不同群體的概率是多少?
②(只理科生做)若來自網(wǎng)購金額在(1,2]的群體中的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,求過橢圓內(nèi)點P(4,2)且被P平分的弦所在直線的方程.

查看答案和解析>>

同步練習(xí)冊答案