【題目】已知圓M:(x﹣1)2+y2= ,橢圓C: +y2=1,若直線l與橢圓交于A,B兩點,與圓M相切于點P,且P為AB的中點,則這樣的直線l有(
A.2條
B.3條
C.4條
D.6條

【答案】C
【解析】解:當直線AB斜率不存在時且與圓M相切時,P在x軸上,

故滿足條件的直線有兩條;

當直線AB斜率存在時,設A(x1,y1),B(x2,y2),P(x0,y0),

+y12=1, +y22=1,

兩式相減,整理得: =﹣

則kAB=﹣ ,kMP= ,kMPkAB=﹣1,

則kMPkAB=﹣ =﹣1,解得:x0= ,

,可得P在橢圓內(nèi)部,

則這樣的P點有兩個,即直線AB斜率存在時,也有兩條.

綜上可得,所求直線l有4條.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)yf(x)在定義域[1,1]上既是奇函數(shù),又是減函數(shù).

(1)求證:對任意x1,x2[1,1],有[f(x1)f(x2)]·(x1x2)0;

(2)f(1a)f(1a2)0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a,b,c為三個不同的實數(shù),記集合A= ,B= ,若集合A,B中元素個數(shù)都只有一個,則b+c=(
A.1
B.0
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的可導函數(shù)f(x)滿足f(x)﹣f(﹣x)=2x3 , 當x∈(﹣∞,0]時f'(x)<3x2 , 實數(shù)a滿足f(1﹣a)﹣f(a)≥﹣2a3+3a2﹣3a+1,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)滿足f(2x)=x2﹣2ax+a2﹣1.
(Ⅰ)求f(x)的解析式,并寫出f(x)的定義域;
(Ⅱ)若f(x)在 上的值域為[﹣1,0],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 焦距為2,過點F2作直線l交橢圓于M、N兩點,△F1MN的周長為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l分別交直線y= x,y=﹣ x于P,Q兩點,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,∠ABC= ,邊BC在平面α內(nèi),頂點A在平面α外,直線AB與平面α所成角為θ.若平面ABC與平面α所成的二面角為 ,則sinθ=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:他們研究過圖(1)中的1,3,6,10,,由于這些數(shù)能夠表示成三角形,所以將其稱為三角形數(shù);類似地,稱圖(2)中的1,4,9,16這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )

A. 289 B. 1 024

C. 1 225 D. 1 378

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋子里裝有7個球,其中有紅球4個,編號分別為1,2,3,4;白球3個,編號分別為2,3,4.從袋子中任取4個球(假設取到任何一個球的可能性相同).
(Ⅰ)求取出的4個球中,含有編號為3的球的概率;
(Ⅱ)在取出的4個球中,紅球編號的最大值設為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案