已知An(an,bn)(n∈N*)是曲線(xiàn)y=ex上的點(diǎn),a1=a,Sn是數(shù)列{an}的前n項(xiàng)和,且滿(mǎn)足:數(shù)學(xué)公式
(1)證明:數(shù)列數(shù)學(xué)公式是常數(shù)數(shù)列;
(2)確定a的取值集合M,使得當(dāng)a∈M時(shí),數(shù)列{an}是單調(diào)遞增數(shù)列;
(3)證明:當(dāng)a∈M時(shí),弦AnAn+1(n∈N*)的斜率隨n單調(diào)遞增.

解:(I)當(dāng)n≥2時(shí),由已知得Sn2-Sn-12=3n2an,
因?yàn)閍n=Sn-Sn-1≠0,所以Sn+Sn-1=3n2①,
于是Sn+1+Sn=3(n+1)2②,
由②-①得an+1+an=6n+3③,
于是an+2+an+1=6n+9④,
由④-③得an+2-an=6⑤,
An(an,bn)(n∈N*)是曲線(xiàn)y=ex上的點(diǎn),所以bn=ean
所以=ean+2-an=e6,是常數(shù),即數(shù)列{}(n≥2)是常數(shù)數(shù)列.
(II)由①有S2+S1=12,所以a2=12-2a、由③有a3+a2=15,a4+a3=21,所以a3=3+2a,a4=18-2a.
而⑤表明:數(shù)列{a2k}和{a2k+1}分別是以a2,a3為首項(xiàng),6為公差的等差數(shù)列,
所以a2k=a2+6(k-1),a2k+1=a3+6(k-1),a2k+2=a4+6(k-1)(k∈N*),
數(shù)列{an}是單調(diào)遞增數(shù)列?a1<a2且a2k<a2k+1<a2k+2對(duì)任意的k∈N*成立.
?a1<a2且a2+6(k-1)<a3+6(k-1)<a4+6(k-1)
?a1<a2<a3<a4?a<12-2a<3+2a<18-2a
?<a<
即所求a的取值集合是M={a|<a<}.
(III)解:弦AnAn+1的斜率為kn==,
任取x0,設(shè)函數(shù)f(x)=,則f(x)=,
記g(x)=ex(x-x0)-(ex-ex0),則g'(x)=ex(x-x0)+ex-ex=ex(x-x0),
當(dāng)x>x0時(shí),g′(x)>0,g(x)在(x0,+∞)上為增函數(shù),
當(dāng)x<x0時(shí),g′(x)<0,g(x)在(-∞,x0)上為減函數(shù),
所以x≠x0時(shí),g(x)>g(x0)=0,從而f′(x)>0,
所以f(x)在(-∞,x0)和(x0,+∞)上都是增函數(shù).
由(II)知,a∈M時(shí),數(shù)列{an}單調(diào)遞增,
取x0=an,因?yàn)閍n<an+1<an+2,所以kn=
取x0=an+2,因?yàn)閍n<an+1<an+2,所以kn+1=
所以kn<kn+1,即弦AnAn+1(n∈N*)的斜率隨n單調(diào)遞增.
分析:(I)當(dāng)n≥2時(shí),通過(guò)已知得Sn2-Sn-12=3n2an,由此可得 =e6是常數(shù),從而說(shuō)明數(shù)列是常數(shù)數(shù)列.
(II)由題設(shè)條件可知a2=12-2a、a3+a2=15,a4+a3=21,所以a3=3+2a,a4=18-2a,數(shù)列{a2k}和{a2k+1}分別是以a2,a3為首項(xiàng),6為公差的等差數(shù)列,所以a2k=a2+6(k-1),a2k+1=a3+6(k-1),a2k+2=a4+6(k-1)(k∈N*),再由數(shù)列{an}是單調(diào)遞增數(shù)列能夠推陳出a的取值集合.
(III)弦AnAn+1的斜率為kn=,通過(guò)an<an+1<an+2,推出kn<kn+1,說(shuō)明弦AnAn+1(n∈N*)的斜率隨n單調(diào)遞增.
點(diǎn)評(píng):本題考查數(shù)列知識(shí)的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,深入挖掘題設(shè)中的隱含條件.注意函數(shù)的單調(diào)性的應(yīng)用,以及導(dǎo)數(shù)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知An(an,bn)(n∈N*)是曲線(xiàn)y=ex上的點(diǎn),a1=a,Sn是數(shù)列{an}的前n項(xiàng)和,且滿(mǎn)足Sn2=3n2an+Sn-12,an≠0,n=2,3,4,….
(1)證明:數(shù)列{
bn+2bn
}(n≥2)是常數(shù)數(shù)列;
(2)確定a的取值集合M,使a∈M時(shí),數(shù)列{an}是單調(diào)遞增數(shù)列;
(3)證明:當(dāng)a∈M時(shí),弦AnAn+1(n∈N*)的斜率隨n單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧德模擬)已知在數(shù)列{an}中,a1=1,an+1=2an(n∈N+),數(shù)列{bn}是公差為3的等差數(shù)列,且b2=a3
(I)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(II)求數(shù)列{an-bn}的前n項(xiàng)和sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a3+b4=24,S5-b4=24.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)對(duì)任意n∈N*,是否存在正實(shí)數(shù)λ,使不等式an-9≤λbn恒成立,若存在,求出λ的最小值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)Tn=
a1
b1
+
a2
b2
+…+
an
bn
(n∈N*)
,若Tn+
3n+5
2n
-
1
n
≤c
恒成立,求實(shí)數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天津)已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=a1b1+a2b2+…+anbn,n∈N*,證明:Tn-8=an-1bn+1(n∈N*,n≥2).

查看答案和解析>>

同步練習(xí)冊(cè)答案