14.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x+y≤3}\end{array}\right.$,則z=2x+y+3的最大值是( 。
A.3B.5C.7D.8

分析 畫出約束條件的可行域,利用目標函數(shù)的幾何意義求解最大值即可.

解答 解:實數(shù)x,y滿足條件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x+y≤3}\end{array}\right.$,滿足的可行域如圖:
則z=2x+y+3即y=-2x+z-3,平移直線y=-2x+z-3,當直線y=-2x+z-3經過A時,目標函數(shù)取得最大值.
由$\left\{\begin{array}{l}{x=2}\\{x+y=3}\end{array}\right.$,可得A(2,1),
則z=2x+y+3的最大值是:2×2+1+3=8.
故選:D.

點評 本題考查線性規(guī)劃的簡單應用,畫出可行域,判斷目標函數(shù)的最值是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知AD為△ABC邊BC的中線,且$\overrightarrow{AB}•\overrightarrow{AC}=-16,|{\overrightarrow{BC}}|=10$,則$|{\overrightarrow{AD}}|$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知點P是銳角△ABC所在平面內的動點,且滿足$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,給出下列四個命題:
①點P的軌跡是一條直線;
②$|\overrightarrow{CP}|=|\overrightarrow{CA}|$恒成立;
③$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$;
④存在點P使得$|\overrightarrow{PC}+\overrightarrow{PB}|=|\overrightarrow{CB}|$.
則其中真命題的序號為( 。
A.①②B.③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.△ABC是邊長為2的正三角形,已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow$,給出下列四個結論.
①|$\overrightarrow$|=1,②$\overrightarrow{a}$•$\overrightarrow$=-1③$\overrightarrow{a}$⊥$\overrightarrow$④(4$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{BC}$
其中正確結論的序號是②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖所示,四棱錐S-ABCD的底面是正方形,每條側棱的長都是底面邊長的$\sqrt{2}$倍,點P在側棱SD上,且SP=3PD.
(1)求證:AC⊥SD;
(2)若$AB=\sqrt{2}$,求三棱錐D-ACP的體積;
(3)側棱SC上是否存在一點E,使得BE∥平面PAC,若存在,求$\frac{SE}{EC}$的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,正八面體P-ABCD-Q由兩個棱長都為a的正四棱錐拼接而成.
(Ⅰ)求PQ的長;
(Ⅱ)證明:四邊形PAQC是正方形;
(Ⅲ)求三棱錐A-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a^x},x≥0\\ kx+1,x<0\end{array}$,且0<a<1,k≠0,若函數(shù)g(x)=f(x)-k有兩個零點,則實數(shù)k的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.f(x)=log${\;}_{\frac{1}{e}}$(x2-2x)的單調遞減區(qū)間為(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設P為等邊三角形ABC所在平面內的一點,滿足$\overrightarrow{AP}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,若AB=1,則$\overrightarrow{PB}$•$\overrightarrow{PC}$=( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案