在三棱錐A-BCD中,P、Q分別是棱AC、BD上的點,連結AQ、CQ、BP、DP、PQ,若三棱錐A-BPQ、B-CPQ、C-DPQ的體積分別為6、2、8,則三棱錐A-BCD的體積為       .
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,在四棱椎中,底面且邊長為2的菱形,側面為正三角形,其所在平面垂直于底面.
(1)若G為邊的中點,求證:平面;
(2)求二面角的大;
(3)若E為的中點,能否在棱上找一點F,使得平面平面,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,平面不能用(  ) 表示.
A.平面α
B.平面AB
C.平面AC
D.平面ABCD
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分分)
在四棱錐中,平面平面,△是等邊三角形,底面是邊長為的菱形,的中點,的中點.

(Ⅰ)求證:平面
(Ⅱ) 求證:∥平面;
(Ⅲ) 求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知三棱柱中,各棱長均為2,平面⊥平           面

(1)求證:⊥平面;
(2)求二面角的大;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐中,平面,底面為矩形,,,的中點.
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積;
(Ⅲ)邊上是否存在一點,使得平面,若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

異面直線是指
A.不相交的兩條直線B.分別位于兩個平面內的直線
C.一個平面內的直線和不在這個平面內的直線D.不同在任何一個平面內的兩條直線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(本小題滿分12分)
如圖,棱錐PABCD的底面ABCD是矩形,
PA⊥平面ABCDPA=AD=2,BD=.
(1)求點C到平面PBD的距離.

O

 
(2)在線段上是否存在一點,使與平面所成的角

的正弦值為,若存在,指出點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如右圖2,在二面角的棱上有,兩點,直線分別在這個二面角的兩個半平面內,且都垂直于,若,則二面角的大小為        

查看答案和解析>>

同步練習冊答案