【題目】已知函數(shù),又恰為 的零點.

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)當(dāng)時,求證

【答案】(1)單減區(qū)間為(0,),(,+∞),單增區(qū)間為();(2)見解析.

【解析】

(1)對函數(shù)fx)求導(dǎo)數(shù),利用a的取值范圍,結(jié)合導(dǎo)數(shù)寫出fx)的單調(diào)區(qū)間;

(2)由gx1)=2lnx1x12(1-b)x1=0,gx2)=2lnx2x22(1-b)x2=0,通過兩式相減,整理化簡可得1-bx2+x1),再代入計算可得g′([2ln],然后換元,構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)和函數(shù)的最值即可證明.

(1)函數(shù)fx)=;

f′(x)=2ax+(x>0),

因為,f′(x)=0,且,

∴當(dāng)時,則fx)的單減區(qū)間為(0,),(,+∞),單增區(qū)間為();

(2)當(dāng)時,g(x)=2lnx--x+bx,

g′(x(1-b)﹣2x.

x1,x2x1x2)是gx)的兩個零點,

gx1)=2lnx1x12(1-b)x1=0,gx2)=2lnx2x22(1-b)x2=0,

兩式相減可得2lnx22x12)﹣(1-b)x2x1)=0,

1-bx2+x1),

g′(x(1-b)﹣2x,

g′(x2+x1)﹣[x2+x1)][2ln][2ln],

不妨設(shè)設(shè)tln1,構(gòu)造函數(shù)ht)=lnt,

h′(t0,

ht)在(1,+∞)上是增函數(shù),

he)>h(1)=0,

0,

g′()<0,又,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一名同學(xué)家開了一個小賣部,他為了研究氣溫對某種引領(lǐng)銷售的影響,記錄了2015年7月至12月每月15號下午14時的氣溫和當(dāng)天的飲料杯數(shù),得到如下資料:

該同學(xué)確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)取線性回歸方程,再用被選中的2組數(shù)據(jù)進(jìn)行檢驗.

(1)求選取2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選中的是8月與12月的兩組數(shù)據(jù),根據(jù)剩下的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若有線性回歸方程得到估計,數(shù)據(jù)與所宣稱的檢驗數(shù)據(jù)的誤差不超過3杯,則認(rèn)為得到的線性回歸方程是理想的,請問(2)所得線性回歸方程是否理想.

附:對于一組數(shù)據(jù),其回歸直線 的斜率和截距的最小二乘法估計分別為: , , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入的t0.01,則輸出的n(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個時段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃),對某種雞的時段產(chǎn)蛋量(單位: )和時段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個雞舍的時段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.

17.40

82.30

3.6

140

9.7

2935.1

35.0

其中.

1)根據(jù)散點圖判斷, 哪一個更適宜作為該種雞的時段產(chǎn)蛋量關(guān)于雞舍時段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)

2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)已知時段投入成本的關(guān)系為,當(dāng)時段控制溫度為28℃時,雞的時段產(chǎn)蛋量及時段投入成本的預(yù)報值分別是多少?

附:①對于一組具有有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, .

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)設(shè),試討論單調(diào)性;

(2)設(shè),當(dāng)時,任意,存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), 為曲線在點處的切線.

)求的方程.

)當(dāng)時,證明:除切點之外,曲線在直線的下方.

)設(shè) , ,且滿足,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案