考點:函數(shù)單調(diào)性的性質(zhì),函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由f(-x)=-f(x),求得n=0,再根據(jù)f(-
)=
,求得m=-2,可得函數(shù)f(x)的解析式.
(2)設(shè)
-≤x1<x2≤,求得 f(x
1)-f(x
2)為
2(x2-x1)+2x1x2(x1-x2) |
(1+x12)(1+x22) |
=
2(x2-x1)(1-x1x2) |
(1+x12)(1+x22) |
>0,可得f(x
1)>f(x
2),從而得到f(x)在[-
,
]上是減函數(shù).
(3)由題意得
f(3t)<-f(-t),根據(jù)f(x)是奇函數(shù)可得
f(3t)<f(t-).結(jié)合f(x)是定義在[-
,
]上的減函數(shù),可得
,由此求得t的范圍.
解答:
解:(1)∵f(x)是奇函數(shù),∴f(-x)=-f(x)∴
=-,
∴m(-x)+n=-(mx+n),∴n=0,∴
f(x)=.
又∵f(-
)=
,∴
=,∴m=-2,∴
f(x)=-.
(2)設(shè)
-≤x1<x2≤,則f(x
1)-f(x
2)=
--(-)=
-2x1(1+x22)+2x2(1+x12) |
(1+x12)(1+x22) |
=
-2x1-2x1x22+2x2+2x2x12 |
(1+x12)(1+x22) |
=
2(x2-x1)+2x1x2(x1-x2) |
(1+x12)(1+x22) |
=
2(x2-x1)(1-x1x2) |
(1+x12)(1+x22) |
,
∵
-≤x1<x2≤,∴x
2-x
1>0,1-x
1x
2>0,
1+x12>0,
1+x22>0,
∴f(x
1)>f(x
2)∴f(x)在[-
,
]上是減函數(shù).
(3)
f(3t)+f(-t)<0可化為
f(3t)<-f(-t),
∵f(x)是奇函數(shù),∴
-f(-t)=f(t-),∴
f(3t)<f(t-).
由(2)得f(x)是定義在[-
,
]上的減函數(shù).
∴
,∴
,∴
0≤t≤.
點評:本題主要考查奇函數(shù)的性質(zhì),函數(shù)的單調(diào)性的判斷和證明,函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.