等邊三角形的邊長(zhǎng)為3,點(diǎn)、分別是邊、上的點(diǎn),且滿足 (如圖1).將△沿折起到△的位置,使二面角為直二面角,連結(jié) (如圖2).
1)求證:平面;
2)在線段上是否存在點(diǎn),使直線與平面所成的角為?若存在,求出的長(zhǎng),若不存在,請(qǐng)說明理由.
1)因?yàn)榈冗叀?sub>的邊長(zhǎng)為3,且,
所以,. 在△中,,
由余弦定理得. 因?yàn)?sub>,
所以
折疊后有,因?yàn)槎娼?sub>是直二面角,
所以平面平面 ,又平面平面,
平面,, 所以平面
2)解法1:假設(shè)在線段上存在點(diǎn),使直線與平面所成的角為.
如圖,作于點(diǎn),連結(jié)、 ,
由(1)有平面,而平面,
所以,又, 所以平面,
所以是直線與平面所成的角 ,
設(shè),則,,
在△中,,所以 ,
在△中,, ,
由, 得 ,解得,滿足,符合題意
所以在線段上存在點(diǎn),使直線與平面所成的角為,此時(shí)
解法2:由(1)的證明,可知,平面.
以為坐標(biāo)原點(diǎn),以射線、、分別為軸、軸、軸的正半軸,建立空間直角坐標(biāo)系如圖 ,設(shè), 則,, ,
所以,,,所以 ,
因?yàn)?sub>平面, 所以平面的一個(gè)法向量為 ,
因?yàn)橹本與平面所成的角為, 所以,
, 解得 ,
即,滿足,符合題意,
所以在線段上存在點(diǎn),使直線與平面所成的角為,此時(shí) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號(hào)依次為1到50的袋裝奶粉中抽取5袋進(jìn)行檢驗(yàn),用系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號(hào)可能是( )
A.5,10,15,20,25 B.2,4,8,16,32 C.5,6,7,8,9 D.5,15,25,35,45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線,過其右焦點(diǎn)作圓的兩條切線,切點(diǎn)記作,,
雙曲線的右頂點(diǎn)為,,其雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在已知數(shù)列的前項(xiàng)和,則此數(shù)列的奇數(shù)項(xiàng)的
前項(xiàng)和是 ( )
A. B . C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖, 四棱柱ABCD-A1B1C1D1中, 側(cè)棱A1A⊥底面ABCD, AB//DC, AB⊥AD,
AD = CD = 1, AA1 = AB = 2, E為棱AA1的中點(diǎn)。
(Ⅰ)證明B1C1⊥CE;
(Ⅱ) 求二面角B1-CE-C1的正弦值.
(Ⅲ) 設(shè)點(diǎn)M在線段C1E上, 且直線AM與平面ADD1A1所成角的
正弦值為, 求線段AM的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com