橢圓的焦距是       ,焦點(diǎn)坐標(biāo)為        ;若CD為過左焦點(diǎn)的弦,則的周長(zhǎng)為     
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓o:與橢圓有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長(zhǎng)為1.
(1)求橢圓方程。
(2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T,使,若存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
已知橢圓與雙曲線有共同的焦點(diǎn)F1、F2,設(shè)它們?cè)诘谝幌笙薜慕稽c(diǎn)為P,且
(1)求橢圓的方程;
(2)已知N(0,-1),對(duì)于(1)中的橢圓,是否存在斜率為的直線,與橢圓交于不同的兩點(diǎn)A、B,點(diǎn)Q滿足?若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)
如圖,直角梯形ABCD,∠,AD∥BC,AB=2,AD=,BC=橢圓F以A、B為焦點(diǎn)且過點(diǎn)D,

(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
Ⅱ)若點(diǎn)E滿足,是否存在斜率兩點(diǎn),且,若存在,求K的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分l2分)
設(shè)橢圓的焦點(diǎn)分別為,直線軸于點(diǎn),且
(Ⅰ)試求橢圓的方程;
(Ⅱ)過分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(diǎn)(如圖所示),試求四邊形面積的最大值和最小值.


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知點(diǎn),點(diǎn)A、B分別在x軸負(fù)半軸和y軸上,且,點(diǎn)滿足,當(dāng)點(diǎn)B在y軸上移動(dòng)時(shí),記點(diǎn)C的軌跡為E。
(1)求曲線E的方程;
(2)過點(diǎn)Q(1,0)且斜率為k的直線交曲線E于不同的兩點(diǎn)M、N,若D(,0),且
·>0,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程表示焦點(diǎn)在軸上的橢圓,則的取值范圍是  ▲   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦距為2,則的值為     .  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直角三角形ABC中,則以點(diǎn)A、B為焦點(diǎn)且過點(diǎn)C的橢圓的離心率e等于    

查看答案和解析>>

同步練習(xí)冊(cè)答案