9.將命題“菱形的對角線互相垂直”改為“若p,則q”的形式,再寫出它的逆命題、否命題、逆否命題.

分析 根據(jù)若p則q”的形式,利用逆命題,否命題,逆否命題與原命題之間的關(guān)系進行改寫即可.

解答 解:命題“菱形的對角線互相垂直”改為“若p,則q”的形式,
“若一個四邊形是菱形,則它的對角線互相垂直”;
逆命題:“若一個四邊形的對角線互相垂直,則它是菱形”;
否命題:“若一個四邊形不是菱形,則它的對角線不垂直”;
逆否命題:“若一個四邊形的對角線不垂直,則它不是菱形”.

點評 本題考查了四種命題之間的關(guān)系與應(yīng)用問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.不等式x2+3x-4<0的解集是(-4,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.甲、乙、丙三人獨立解決同一道數(shù)學題,如果三人分別完成的概率依次是p1、p2、p3,那么至少有一人解決這道題的概率是( 。
A.p1+p2+p3B.1-(1-p1)(1-p2)(1-p3C.1-p1p2p3D.p1p2p3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.有一個奇數(shù)列1,3,5,7,9,…,現(xiàn)進行如下分組:第1組含有一個數(shù){1},第2組含兩個數(shù){3,5};第3組含三個數(shù){7,9,11};…試觀察每組內(nèi)各數(shù)之和與其組的編號數(shù)n的關(guān)系為等于n3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.雙曲線的中心在原點,實軸在x軸上,與圓x2+y2=5交于點P(2,-1),如果圓在點P的切線平行于雙曲線的左頂點與虛軸的一個端點的連線,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸,建立極坐標系,若直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y={y}_{0}+tsinα}\end{array}\right.$(t為參數(shù),α為l的傾斜角),曲線E的極坐標方程為ρ=4sinθ.射線θ=β,θ=β+$\frac{π}{4}$,θ=β-$\frac{π}{4}$與曲線E分別交于不同于極點的三點A、B、C.
(1)求證:|OB|+|OC|=$\sqrt{2}$|OA|;
(2)當β=$\frac{7π}{12}$時,直線l過B、C兩點,求y0與α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)是R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),若對任意實數(shù)x,都有f(x)>f'(x),且f(x)-1為奇函數(shù),則不等式f(x)<ex的解集為( 。
A.(-∞,0)B.(-∞,e4C.(e4,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)$f(x)=2sin(2ωx+\frac{π}{6})+1$(其中0<ω<2),若直線$x=\frac{π}{6}$是函數(shù)f(x)圖象的一條對稱軸.
(1)求ω及f(x)的最小正周期;
(2)求函數(shù)f(x)在$x∈[{-\frac{π}{2},\frac{π}{2}}]$上的單調(diào)遞減區(qū)間.
(3)若函數(shù)g(x)=f(x)+a在區(qū)間$[{0,\frac{π}{2}}]$上的圖象與x軸沒有交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中將底面為直角三角形,且側(cè)棱與底面垂直的棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵ABM-DCP與芻童的組合體中AB=AD,A1B1=A1D1.棱臺體積公式:V=$\frac{1}{3}$(S′+$\sqrt{S′S}$+S)h,其中S′,S分別為棱臺上、下底面面積,h為棱臺高.
(Ⅰ)證明:直線BD⊥平面MAC;
(Ⅱ)若AB=1,A1D1=2,MA=$\sqrt{3}$,三棱錐A-A1B1D1的體積V=$\frac{2\sqrt{3}}{3}$,求該組合體的體積.

查看答案和解析>>

同步練習冊答案