已知函數(shù)f(x)=|lgx|.若f(a)=f(b)且a≠b,則a+b的取值范圍是
(2,+∞)
(2,+∞)
分析:由a≠b,不妨令0,a<b,又y=lgx是一個增函數(shù),且f(a)=f(b),結合函數(shù)f(x)=|lgx|圖象可得,0<a<1<b,且lga=-lgb,再化簡得到ab的積,最后利用基本不等式即可求解a+b的取值范圍.
解答:解:∵f(a)=f(b),所以|lga|=|lgb|,
不妨設0<a<b,結合函數(shù)f(x)=|lgx|圖象,
則0<a<1<b,
且lga=-lgb,lga+lgb=0
∴l(xiāng)g(ab)=0⇒ab=1,
又a>0,b>0,且a≠b
由基本不等式得:(a+b)2>4ab=4
∴a+b>2
∴a+b的取值范圍是(2,+∞).
故答案為(2,+∞)
點評:本小題主要考查函數(shù)單調性的應用、函數(shù)奇偶性的應用、不等式的解法等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案