已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)),
(Ⅰ)當(dāng)α=
π
3
時,求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時,求P點(diǎn)的軌跡的參數(shù)方程,并指出它是什么曲線.
分析:(I)先消去參數(shù)將曲線C1與C2的參數(shù)方程化成普通方程,再聯(lián)立方程組求出交點(diǎn)坐標(biāo)即可,
(II)設(shè)P(x,y),利用中點(diǎn)坐標(biāo)公式得P點(diǎn)軌跡的參數(shù)方程,消去參數(shù)即得普通方程,由普通方程即可看出其是什么類型的曲線.
解答:解:(Ⅰ)當(dāng)α=
π
3
時,C1的普通方程為y=
3
(x-1)
,C2的普通方程為x2+y2=1.
聯(lián)立方程組
y=
3
(x-1)
x2+y2=1

解得C1與C2的交點(diǎn)為(1,0)(
1
2
,-
3
2
)

(Ⅱ)C1的普通方程為xsinα-ycosα-sinα=0①.
則OA的方程為xcosα+ysinα=0②,
聯(lián)立①②可得x=sin2α,y=-cosαsinα;
A點(diǎn)坐標(biāo)為(sin2α,-cosαsinα),
故當(dāng)α變化時,P點(diǎn)軌跡的參數(shù)方程為:
x=
1
2
sin2α
y=-
1
2
sinαcosα
(α為參數(shù))
,
P點(diǎn)軌跡的普通方程(x-
1
4
)
2
+y2=
1
16

故P點(diǎn)軌跡是圓心為(
1
4
,0)
,半徑為
1
4
的圓.
點(diǎn)評:本題主要考查直線與圓的參數(shù)方程,參數(shù)方程與普通方程的互化,利用參數(shù)方程研究軌跡問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線C1
x=1+
3
2
t
y=
1
2
t
(t為參數(shù)),圓C2
x=cosθ
y=sinθ
(θ為參數(shù)),則C1被C2所截得的弦長為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù)),C2
x=8cosθ
y=3sinθ
(θ為參數(shù)),
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=
π
2
,Q為C2上的動點(diǎn),求PQ中點(diǎn)M到直線C3
x=3+2t
y=-2+t
(t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

考生注意:請?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(幾何證明選做題) 如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,HB=2.則DE=
8
8

B.(坐標(biāo)系與參數(shù)方程選做題)已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)),當(dāng)α=
π
3
時,C1與C2的交點(diǎn)坐標(biāo)為
(1,0);(
1
2
,-
3
2
)
(1,0);(
1
2
,-
3
2
)

C.(不等式選做題)若不等式|2a-1|≤|x+
1
x
|
對一切非零實(shí)數(shù)a恒成立,則實(shí)數(shù)a的取值范圍
[-
1
2
,
3
2
]
[-
1
2
,
3
2
]

查看答案和解析>>

同步練習(xí)冊答案