12.設n=${∫}_{0}^{\frac{π}{2}}$(4sinx+conx)dx,則n=( 。
A.3B.4C.5D.6

分析 找出被積函數(shù)的原函數(shù),計算即可.

解答 解:n=${∫}_{0}^{\frac{π}{2}}$(4sinx+conx)dx=(-4cosx+sinx)|${\;}_{0}^{\frac{π}{2}}$=4+1=5;
故選:C.

點評 本題考查了定積分的計算;關鍵是正確找出被積函數(shù)的原函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.下列說法正確的有①②③④
①四邊形ABCD平面內(nèi)有一點O,若$\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}$,則四邊形ABCD為平行四邊形
②△ABC中,若A>B則sinA>sinB,反之亦成立
③函數(shù)$y={(\frac{1}{2})^{\sqrt{{x^2}-2x}}}$的值域為(0,1]
④方程$\sqrt{2x+1}=x+m$有兩個不同解,則$m∈[{\frac{1}{2},1})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某地今年上半年患某種傳染病的人數(shù)y(單位:人)與月份x(單位:月)之間滿足函數(shù)關系,模型為y=aebx,請轉(zhuǎn)化成線性方程.(小數(shù)點后面保留2位有效數(shù)字)
月份x/月123456
人數(shù)y/人526168747883
附:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{{x}^{2}}}^{\;}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,令u=lny,$\sum_{i=1}^6{u_i}$=25.3595,$\sum_{i=1}^6{u_i^2}$=107.334,$\sum_{i=1}^6{x_i}{u_i}$=90.3413,$\overline u$≈4.2265.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)在x=x0處可導,則$\lim_{h→0}\frac{{f({x_0}+h)-f({x_0}-h)}}{h}$等于(  )
A.f′(x0B.2f′(x0C.-2f′(x0D.-f′(x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.${∫}_{-2}^{2}$(x2sinx+$\sqrt{16-{4x}^{2}}$)dx=4π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.將函數(shù)f(x)=cos(2x+$\frac{π}{3}$)的圖象向左平移φ(φ>0)個單位長度得到函數(shù)g(x)的圖象,若函數(shù)g(x)為奇函數(shù),則φ的最小值是$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.(1)求$\int_{-1}^1$(x2+x-$\sqrt{1-{x^2}}}$)dx=$\frac{2}{3}-\frac{π}{2}$.
(2)在8張獎券中有一、二、三等獎各1張,其余5張無獎.將這8張獎券分配給4個人,每人2張,不同的獲獎情況有多少種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)的定義域為R,且f(x)+2f(-x)=x2-x,則f(x)=$\frac{1}{3}$x2+x,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$均為單位向量,且$\overrightarrow{a}$⊥$\overrightarrow$,則($\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$)•$\overrightarrow{c}$的最大值是( 。
A.1-$\sqrt{3}$B.-1C.1D.1+$\sqrt{2}$

查看答案和解析>>

同步練習冊答案