已知函數(shù)在點(diǎn)處的切線方程為
(1)求的值;
(2)對(duì)函數(shù)定義域內(nèi)的任一個(gè)實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍.

(1);(2)

解析試題分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義,函數(shù)在處的導(dǎo)數(shù)就是曲線在點(diǎn)處切線的斜率,把點(diǎn)代入切線方程中,得,把點(diǎn)代入中,得關(guān)于的一個(gè)方程,又,得關(guān)于的另一個(gè)方程,聯(lián)立解;(2)恒成立問(wèn)題的解決辦法,一種方法是參變分離,由(1)得,∴,左邊函數(shù)的最大值;第二種方法是構(gòu)造函數(shù),但是考慮到求導(dǎo)時(shí)候的困難,可先變形, ,,記,最大值小于0,即可.
試題解析:(1)由
而點(diǎn)在直線,又直線的斜率為
故有
(2)方法一:由(1)得

,故在區(qū)間上是減函數(shù),故當(dāng)時(shí),,當(dāng)時(shí),,從而當(dāng)時(shí),,當(dāng)時(shí),是增函數(shù),在是減函數(shù),故要使成立,只需,故的取值范圍是.
方法二:由,則,∴,記,①當(dāng)時(shí),不滿足恒小于0;②當(dāng)時(shí),令,當(dāng)時(shí),遞增,遞減,,;當(dāng)時(shí), 所以不滿足,綜上所述:的取值范圍是.
考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、利用導(dǎo)數(shù)求函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖像過(guò)原點(diǎn),且在處的切線為直線
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知.
(Ⅰ)求函數(shù)上的最小值;
(Ⅱ)對(duì)一切恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:對(duì)一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè).
(1)若時(shí),單調(diào)遞增,求的取值范圍;
(2)討論方程的實(shí)數(shù)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(I)求的單調(diào)區(qū)間;
(II)設(shè),若上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,,,點(diǎn)A、B為函數(shù)的相鄰兩個(gè)零點(diǎn),AB=π.
(1)求的值;
(2)若,,求的值;
(3)求在區(qū)間上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x-ax+(a-1)。
(1)討論函數(shù)的單調(diào)性;(2)若,設(shè),
(。┣笞Cg(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對(duì)任意x,x,xx,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若時(shí),求的單調(diào)區(qū)間;
(Ⅱ)時(shí),有極值,且對(duì)任意時(shí),求 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案