已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無實(shí)根,下列命題中:
(1)方程f [f (x)]=x一定無實(shí)根;
(2)若a>0,則不等式f [f (x)]>x對(duì)一切實(shí)數(shù)x都成立;
(3)若a<0,則必存在實(shí)數(shù)x0,使f [f (x0)]>x0;
(4)若a+b+c=0,則不等式f [f (x)]<x對(duì)一切x都成立;
正確的序號(hào)有         .                
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),當(dāng)時(shí),恒成立,則
的最大值與最小值之和為 (   )
A. 18B. 16 C. 14D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)f(x)=2x和g(x)=x3的圖象的示意圖如右圖所示,設(shè)兩函數(shù)的圖象交于點(diǎn)A(x1,y1),B(x2,y2),且x1<x2.

(1)請(qǐng)指出示意圖中曲線C1,C2分別對(duì)應(yīng)哪一個(gè)函數(shù)?
(2)若x1∈,x2∈,且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12}指出a,b的值,并說明理由;
(3)結(jié)合函數(shù)圖象示意圖,判斷f(6),g(6),f(2010),g(2010)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-xm,且f(4)=-.
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

溫州某私營(yíng)公司生產(chǎn)一種產(chǎn)品,根據(jù)歷年的情況可知,生產(chǎn)該產(chǎn)品每天的固定成本為14000元,每生產(chǎn)一件該產(chǎn)品,成本增加210元.已知該產(chǎn)品的日銷售量與產(chǎn)量之間的關(guān)系式為
,每件產(chǎn)品的售價(jià)與產(chǎn)量之間的關(guān)系式為

(Ⅰ)寫出該公司的日銷售利潤(rùn)與產(chǎn)量之間的關(guān)系式;
(Ⅱ)若要使得日銷售利潤(rùn)最大,每天該生產(chǎn)多少件產(chǎn)品,并求出最大利潤(rùn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)上是減函數(shù),在上是增函數(shù);函數(shù)上是減函數(shù),在上是增函數(shù);函數(shù)上是減函數(shù),在上是增函數(shù);……利用上述所提供的信息解決問題:若函數(shù)的值域是,則實(shí)數(shù)的值是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知上的減函數(shù),那么的取值范圍是  (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù),且。
(1)求的值;
(2)判定的奇偶性;
(3)判斷上的單調(diào)性,并給予證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)上的最大值為,則的最小值為( )
A.B.1 C.D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案