已知a、b、c∈R,函數(shù)f(x)=ax2+bx+c.若f(0)=f(4)>f(1),則( )
A.a(chǎn)>0,4a+b=0
B.a(chǎn)<0,4a+b=0
C.a(chǎn)>0,2a+b=0
D.a(chǎn)<0,2a+b=0
【答案】分析:由f(0)=f(4)可得4a+b=0;由f(0)>f(1)可得a+b<0,消掉b變?yōu)殛P(guān)于a的不等式可得a>0.
解答:解:因為f(0)=f(4),即c=16a+4b+c,
所以4a+b=0;
又f(0)>f(1),即c>a+b+c,
所以a+b<0,即a+(-4a)<0,所以-3a<0,故a>0.
故選A.
點評:本題考查二次函數(shù)的性質(zhì)及不等式,屬基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

50、已知a,b,c∈R,證明:a2+4b2+9c2≥2ab+3ac+6bc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:
(1)已知x,y都是正實數(shù),求證:x3+y3≥x2y+xy2,
(2)已知a,b,c∈R+,且a+b+c=1,求證:a2+b2+c2 ≥ 
13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c∈R+且滿足a+2b+3c=1,則
1
a
+
1
2b
+
1
3c
的最小值為
9
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知a,b,c∈R,且a+b+c=1,求證:a2+b2+c2
1
3

(2)a,b,c為互不相等的正數(shù),且abc=1,求證:
1
a
+
1
b
+
1
c
a
+
b
+
c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c∈R,且a>b,那么下列不等式中成立的是( 。

查看答案和解析>>

同步練習冊答案