設(shè)函數(shù)f(x)=lg(
2
x+1
-1)
的定義域?yàn)榧螦,函數(shù)g(x)=
1-a2-2ax-x2
的定義域?yàn)榧螧.
(I)求f(
1
2013
)+f(-
1
2013
)
的值;
(II)求證:a≥2是A∩B=∅的充分非必要條件.
分析:(I)判斷函數(shù)f(x)的奇偶性,進(jìn)而根據(jù)奇偶性可得f(
1
2013
)+f(-
1
2013
)
的值;
(II)分別求出A,B,分別討論是a≥2⇒A∩B=∅與A∩B=∅⇒a≥2的真假,進(jìn)而根據(jù)充要條件的定義可證得結(jié)論.
解答:解:(I)由題意得A={x|
2
x+1
-1
>0}={x|
x-1
x+1
<0
}=(-1,1)
又∵f(x)=lg(
2
x+1
-1)
=lg(
1-x
x+1
)
,
∴f(-x)=lg(
1+x
-x+1
)
=lg(
1-x
x+1
)
-1
=-lg(
1-x
x+1
)
=-f(x)
∴f(x)是奇函數(shù)
f(
1
2013
)+f(-
1
2013
)
=0
(II)B={x|1-a2-2ax-x2≥0}=[-1-a,1-a]
當(dāng)a≥2時(shí),1-a≤-1,此時(shí)A∩B=∅
當(dāng)A∩B=∅時(shí),1-a≤-1,或-1-a≥1,即a≥2,或a≤-2
故a≥2是A∩B=∅的充分非必要條件
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是充要條件,函數(shù)求值,函數(shù)的奇偶性,集合之間的關(guān)系,其中(I)的關(guān)鍵是判斷出函數(shù)的奇偶性,(II)的關(guān)鍵是真正理解A∩B=∅的含義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(2x-3)(x-
1
2
)
的定義域?yàn)榧螦,函數(shù)g(x)=
-x2+4ax-3a2
(a>0)的定義域?yàn)榧螧.
(1)當(dāng)a=1時(shí),求集合A∩B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(ax)•lg
a
x2

(1)當(dāng)a=0.1,求f(1000)的值.
(2)若f(10)=10,求a的值;
(3)若對(duì)一切正實(shí)數(shù)x恒有f(x)≤
9
8
,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有下列命題:
①設(shè)a,b為正實(shí)數(shù),若a2-b2=1,則a-b<1;
②已知a>2b>0,則a2+
8
b(a-2b)
的最小值為16;
③數(shù)列{n(n+4)(
2
3
)n}中的最大項(xiàng)是第4項(xiàng)

④設(shè)函數(shù)f(x)=
lg|x-1|,x≠1
0,x=1
,則關(guān)于x的方程f2(x)+2f(x)=0有4個(gè)解.
⑤若sinx+siny=
1
3
,則siny-cos2x的最大值是
4
3

其中的真命題有
①②③
①②③
.(寫出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(
2
x+1
-1)
的定義域?yàn)榧螦,函數(shù)g(x)=
1-a2-2ax-x2
的定義域?yàn)榧螧.
(1)求證:函數(shù)f(x)的圖象關(guān)于原點(diǎn)成中心對(duì)稱.
(2)a≥2是A∩B=Φ的什么條件(充分非必要條件、必要非充分條件、充要條件、既非充分也非必要條件)?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(x+
x2+1
)

(1)確定函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)證明函數(shù)f(x)在其定義域上是單調(diào)增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案