已知曲線C:y=x2,則過點P(1,0)的曲線C的切線斜率為


  1. A.
    2
  2. B.
    4
  3. C.
    0或2
  4. D.
    0或4
D
分析:欲求出切線方程,只須求出其斜率即可,故先設切點坐標為(t,t2),利用導數(shù)求出在x=t處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
解答:∵f′(x)=2x,
設切點坐標為(t,t2),
則切線方程為y-t2=2t(x-t),
∵切線過點P(1,0),∴0-t2=2t(1-t),
∴t=0或t=2.
則切線斜率為0或 4.
故選D.
點評:本題主要考查了導數(shù)的幾何意義,以及利用導數(shù)研究曲線上某點切線方程,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知曲線C:y=x2與直線l:x-y+2=0交于兩點A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點A和點B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設點P(s,t)是L上的任一點,且點P與點A和點B均不重合,若點Q是線段AB的中點,試求線段PQ的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:y=x2與直線l:x-y+2=0交于兩點A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點A和點B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設點P(s,t)是L上的任一點,且點P與點A和點B均不重合.
(1)若點Q是線段AB的中點,試求線段PQ的中點M的軌跡方程;
(2)若曲線G:x2-2ax+y2-4y+a2+
5125
=0與D有公共點,試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7、已知曲線C:y=x2,則過點P(1,0)的曲線C的切線斜率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•湖北模擬)已知曲線C:y=x2(x>0),過C上的點A1(1,1)作曲線C的切線l1交x軸于點B1,再過B1作y軸的平行線交曲線C于點A2,再過A2作曲線C的切線l2交x軸于點B2,再過B2作y軸的平行線交曲線C于點A&3,…,依次作下去,記點An的橫坐標為an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記bn=(8-2n)an,設數(shù)列{bn}的前n項和為Tn,求證:0<Tn≤4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取線段OQ的中點A1,過A1作x軸的垂線交曲線C于P1,過P1作y軸的垂線交RQ于B1,記a1為矩形A1P1B1Q的面積.分別取線段OA1,P1B1的中點A2,A3,過A2,A3分別作x軸的垂線交曲線C于P2,P3,過P2,P3分別作y 軸的垂線交A1P1,RB1于B2,B3,記a2為兩個矩形A2P2B2A1與矩形A3P3B3B1的面積之和.以此類推,記an為2n-1個矩形面積之和,從而得數(shù)列{an},設這個數(shù)列的前n項和為Sn
(Ⅰ) 求a2與an;
(Ⅱ) 求Sn,并證明Sn
13

查看答案和解析>>

同步練習冊答案