已知
C
n
10
=
C
2
10
,則n=
2或8
2或8
分析:直接利用組合數(shù)公式的性質(zhì)得答案.
解答:解:∵
C
n
10
=
C
2
10
,
∴當(dāng)n=2時(shí),上式顯然成立;
當(dāng)n≠2時(shí),由組合數(shù)公式的性質(zhì)得:n+2=10,∴n=8.
∴n的值為2或8.
故答案為:2或8.
點(diǎn)評(píng):本題考查了組合及組合數(shù)公式,考查了組合數(shù)公式的性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)為下崗人員免費(fèi)提供財(cái)會(huì)和計(jì)算機(jī)培訓(xùn),以提高下崗人員的再就業(yè)能力.每名下崗人員可以選擇參加一項(xiàng)培訓(xùn)、參加兩項(xiàng)培訓(xùn)或不參加培訓(xùn),已知參加過財(cái)會(huì)培訓(xùn)的有60%,參加過計(jì)算機(jī)培訓(xùn)的有75%.假設(shè)每個(gè)人對(duì)培訓(xùn)項(xiàng)目的選擇是相互獨(dú)立的,且各人的選擇相互之間沒有影響.
(Ⅰ)任選1名下崗人員,求該人參加過培訓(xùn)的概率;
(Ⅱ)任選3名下崗人員,記ξ為3人中參加過培訓(xùn)的人數(shù),求ξ的分布列和期望.
 ξ  0  1  2  3
 P  0.021  0.027  0.243  0.729

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+ax2-x-1在(-∞,+∞)上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,-
3
]∪[
3
,+∞)
B、[-
3
,
3
]
C、(-∞,-
3
)∪(
3
,+∞)
D、(-
3
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a、b、m為整數(shù)(m>0),若a和b被m除得的余數(shù)相同,則稱a和b對(duì)模m同余.記為a≡b(bmodm).已知a=1+
C
1
10
+
C
2
10
•2
+
C
3
10
22+…+
C
10
10
29
,b≡a(bmod10),則b的值可以是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案