(本題滿分13分)
設(shè)橢圓的左、右焦點(diǎn)分別為F1與F2,直線過橢圓的一個焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長為。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))
,
(1)依題意軸交于點(diǎn)F2(1,0)
    (1分)

所以


所以橢圓C的方程為  (4分)
(2)依題意曲線的方程為
即圓  (5分)
因?yàn)橹本與曲線相切,
所以,
        (6分)


設(shè)
所以,
所以          (7分)
所以    (8分)
所以


所以  (9分)
所以

所以
所以  (10分)

設(shè)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141711316473.gif" style="vertical-align:middle;" />,所以

上為遞增函數(shù),
所以  (12分)
又O到AB的距離為1,
所以
的面積的取值范圍為   (13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
設(shè)橢圓的兩個焦點(diǎn)是,且橢圓上存在點(diǎn)M,使
(1)求實(shí)數(shù)m的取值范圍;
(2)若直線與橢圓存在一個公共點(diǎn)E,使得|EF|+|EF|取得最小值,求此最小值及此時橢圓的方程;
(3)在條件(2)下的橢圓方程,是否存在斜率為的直線,與橢圓交于不同的兩A,B,滿足,且使得過點(diǎn)兩點(diǎn)的直線NQ滿足=0?若存在,求出k的取值范圍;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖5,已知橢圓的離心率為,其右焦點(diǎn)F是圓的圓心。
(1)求橢圓方程;
(2)過所求橢圓上的動點(diǎn)P作圓的兩條切線分別交軸于兩點(diǎn),當(dāng)時,求此時點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本題滿分14分)已知直角坐標(biāo)平面內(nèi)點(diǎn)到點(diǎn)與點(diǎn)的距離之和為
(Ⅰ)試求點(diǎn)的軌跡的方程;
(Ⅱ)若斜率為的直線與軌跡交于、兩點(diǎn),點(diǎn)為軌跡上一點(diǎn),記直線的斜率為,直線的斜率為,試問:是否為定值?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換可把平面直角坐標(biāo)系上的點(diǎn)變換到這一平面上的點(diǎn).特別地,若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動點(diǎn).
(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時,其兩個焦點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);
(2)當(dāng)時,求(1)中的橢圓在變換下的所有不動點(diǎn)的坐標(biāo);
(3)試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的雙曲線在變換
,)下的不動點(diǎn)的存在情況和個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn),B為橢圓+=1的左準(zhǔn)線與軸的交點(diǎn),若線段AB的中點(diǎn)C在橢圓上,則該橢圓的離心率為       
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知動點(diǎn)P(x,y)在橢圓上,若F(3,0),,且M為PF中點(diǎn),則=_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

16.在△ABC中,∠A=15°,∠B=105°,若以A,B為焦點(diǎn)的橢圓經(jīng)過點(diǎn)C.則該橢圓的離心率          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知橢圓的左、右準(zhǔn)線分別為l1、l2,且分別交x軸于C、D兩點(diǎn),從l1上一點(diǎn)A發(fā)出一條光線經(jīng)過橢圓的左焦點(diǎn)Fx軸反射后與l2交于點(diǎn)B,若,且,則橢圓的離心率等于_____________.

查看答案和解析>>

同步練習(xí)冊答案