18.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象如圖所示,則f(0)的值為$\frac{\sqrt{2}}{2}$.

分析 根據(jù)函數(shù)f(x)的圖象,求出最小正周期T和ω的值,根據(jù)五點法畫圖的定義求出φ的值,寫出f(x)的解析式,再計算f(0)的值.

解答 解:根據(jù)函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象知,
$\frac{T}{2}$=$\frac{π}{4}$-(-$\frac{3π}{4}$)=π,
∴T=2π,
∴ω=$\frac{2π}{T}$=1;
根據(jù)五點法畫圖知,
x=$\frac{π}{4}$時,ω•$\frac{π}{4}$+φ=π,
解得φ=$\frac{3π}{4}$,
∴f(x)=sin(x+$\frac{3π}{4}$);
∴f(0)=sin$\frac{3π}{4}$=$\frac{\sqrt{2}}{2}$,
即f(0)的值為$\frac{{\sqrt{2}}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點評 本題考查了函數(shù)f(x)=sin(ωx+φ)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線2x+y=3的傾斜角是π-arctan2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$.
(1)分別求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值,并歸納猜想一般性結(jié)論,并給出證明;
(2)求值:f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在等腰△ABC中,∠BAC=90°,AB=AC=2,$\overrightarrow{BC}$=2$\overrightarrow{BD}$,$\overrightarrow{AC}$=3$\overrightarrow{AE}$,則$\overrightarrow{BE}$在$\overrightarrow{AD}$方向上的投影$-\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow a=(1,m)$,$\overrightarrow b=(m,1)$,則“m=1”是“$\overrightarrow a∥\overrightarrow b$”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.天氣預(yù)報是氣象專家根據(jù)預(yù)測的氣象資料和專家們的實際經(jīng)驗,經(jīng)過分析推斷得到的,在現(xiàn)實的生產(chǎn)生活中有著重要的意義.某快餐企業(yè)的營銷部門經(jīng)過對數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營情況與降雨天數(shù)和降雨量的大小有關(guān).
(Ⅰ)天氣預(yù)報說,在今后的三天中,每一天降雨的概率均為40%,該營銷部門通過設(shè)計模擬實驗的方法研究三天中恰有兩天降雨的概率,利用計算機產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),并用1,2,3,4,表示下雨,其余6個數(shù)字表示不下雨,產(chǎn)生了20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
求由隨機模擬的方法得到的概率值;
(Ⅱ)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小x(單位:毫米)與其出售的快餐份數(shù)y成線性相關(guān)關(guān)系,該營銷部門統(tǒng)計了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:
降雨量(毫米)12345
快餐數(shù)(份)5085115140160
試建立y關(guān)于x的回歸方程,為盡量滿足顧客要求又不造成過多浪費,預(yù)測降雨量為6毫米時需要準備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))
附注:回歸方程$\widehaty=\widehatbx+\widehata$中斜率和截距的最小二乘估計公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{({x_i}}-\overline x{)^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$cos(α+\frac{π}{4})=\frac{1}{3}$,$α∈(0,\frac{π}{2})$,則sinα的值為(  )
A.$\frac{{4-\sqrt{2}}}{6}$B.$\frac{{4+\sqrt{2}}}{6}$C.$\frac{7}{18}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)$y=2sin({\frac{π}{4}-2x})$的單調(diào)增區(qū)間是[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓x2+y2-4x+4y-1=0與圓x2+y2+2x-4y+1=0的位置關(guān)系是(  )
A.相離B.相交C.內(nèi)切D.外切

查看答案和解析>>

同步練習(xí)冊答案