已知圓C過(guò)點(diǎn)P(1,1)且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對(duì)稱,作斜率為1的直線l與圓C交于A,B兩點(diǎn),且點(diǎn)P(1,1)在直線l的左上方,
(1)求圓C的方程;
(2)證明:△PAB的內(nèi)切圓的圓心在定直線x=1上;
(3)若∠APB=60°,求△PAB的面積。
解:(1)設(shè)圓心C(a,b),則,
,
∴圓C的方程為;
(2)設(shè)直線AB的方程為:y=x+m,
,
,


,
從而,
因此,∠APB的平分線為垂直于x軸的直線,
又P(1,1),所以△PAB 的內(nèi)切圓的圓心在直線x=1上。
(3)若∠APB=60°,結(jié)合(2)可知:,
直線PA的方程為:
圓心O到直線PA的距離,
,
同理可得:;
。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C過(guò)點(diǎn)P(1,1),且與圓(x+3)2+(y+3)2=r2(r>0)關(guān)于直線x+y+3=0對(duì)稱.
(Ⅰ)求圓C的方程;
(Ⅱ)過(guò)點(diǎn)P作兩條直線分別與圓C相交于點(diǎn)A、B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),判斷直線OP與AB是否平行,并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C過(guò)點(diǎn)P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于x+y+2=0對(duì)稱.
(Ⅰ)求圓C的方程;
(Ⅱ)過(guò)點(diǎn)(
2
,2)作圓C的切線,求切線的方程;
(Ⅲ)過(guò)點(diǎn)P作兩條相異直線分別與圓C相交A,B兩點(diǎn),設(shè)直線PA和直線PB的斜率分別為k,-k,O為坐標(biāo)原點(diǎn),試判斷直線OP和直線AB是否平行?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C過(guò)點(diǎn)P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對(duì)稱.
(1)求圓C的方程;
(2)直線l過(guò)點(diǎn)Q(1,0.5),截圓C所得的弦長(zhǎng)為2,求直線l的方程;
(3)過(guò)點(diǎn)P作兩條相異直線分別與圓C相交于A,B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP和AB是否平行?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C過(guò)點(diǎn)P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對(duì)稱.
(1)判斷圓C與圓M的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)P作兩條相異直線分別與圓C相交于A,B.若直線PA和直線PB互相垂直,求PA+PB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C過(guò)點(diǎn)P(1,1),且圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對(duì)稱.
(1)判斷圓C與圓M的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)P作兩條相異直線分別與⊙C相交于A,B.
①若直線PA和直線PB互相垂直,求PA+PB的最大值;
②若直線PA和直線PB與x軸分別交于點(diǎn)G、H,且∠PGH=∠PHG,O為坐標(biāo)原點(diǎn),試判斷直線OP和AB是否平行?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案