(04年浙江卷理)設(shè)曲線(xiàn)y=e-x(x≥0)在點(diǎn)M(t,e-t}處的切線(xiàn)l與x軸、y軸圍成的三角形面積為S(t).
(1)求切線(xiàn)l的方程;
(2)求S(t)的最大值。
解析:(Ⅰ)因?yàn)?IMG height=24 src='http://thumb.zyjl.cn/pic1/img/20090414/20090414140832001.gif' width=144>
所以切線(xiàn)的斜率為
故切線(xiàn)的方程為即。
(Ⅱ)令y=0得x=t+1,
又令x=0得
所以S(t)==
從而
∵當(dāng)(0,1)時(shí),>0,
當(dāng)(1,+∞)時(shí),<0,
所以S(t)的最大值為S(1)=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(04年浙江卷理)如圖,△OBC的三個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P1為線(xiàn)段BC的中點(diǎn),P2為線(xiàn)段CO的中點(diǎn),P3為線(xiàn)段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n,Pn+3為線(xiàn)段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),an=yn+yn+1+yn+2.
(1)求a1,a2,a3及an;
(2)證明,nÎN*;
(3)若記bn=y4n+4-y4n,nÎN*,證明{bn}是等比數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(04年浙江卷理)設(shè)z=x-y, 式中變量x和y滿(mǎn)足條件, 則z的最小值為
(A)1 (B)-1 (C)3 (D)-3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(04年浙江卷理)設(shè)f '(x)是函數(shù)f(x)的導(dǎo)函數(shù),y=f '(x)的圖象如右圖所示,則y=f(x)的圖象最有可能的是
(A) (B) (C) (D)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com