精英家教網 > 高中數學 > 題目詳情
A={(x,y)|y=,a>0},B={(x,y)|(x–1)2+(y)2=a2,a>0},且AB,求a的最大值與最小值.
amin=2–2, amax=2+2.
∵集合A中的元素構成的圖形是以原點O為圓心,a為半徑的半圓;集合B中的元素是以點O′(1,)為圓心,a為半徑的圓.如圖所示:

AB,∴半圓O和圓O′有公共點.
顯然當半圓O和圓O′外切時,a最小
a+a=|OO′|=2,∴amin=2–2
當半圓O與圓O′內切時,半圓O的半徑最大,即a最大.
此時aa=|OO′|=2,∴amax=2+2.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分13分)

一動圓與圓外切,同時與圓內切.
(1)求動圓圓心的軌跡的方程;
(2)在矩形中(如圖),
分別是矩形四邊的中點,分別是(其中是坐標系原點)的中點,直線
的交點為,證明點在軌跡上.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

軸同側的兩個圓:動圓和圓外切(),且動圓軸相切,求
(1)動圓的圓心軌跡方程L;
(2)若直線與曲線L有且僅有一個公共點,求之值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

下列方程能否表示圓?若能表示圓,求出圓心和半徑.
(1)2x2+y2-7y+5=0;
(2)x2-xy+y2+6x+7y=0;
(3)x2+y2-2x-4y+10=0;
(4)2x2+2y2-5x=0.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

圓C1:(x-1)2+(y-2)2=1,圓C2:(x-2)2+(y-5)2=9,則這兩圓公切線的條數為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

兩圓x2+y2+2ax+2ay+2a2-1=0與x2+y2+2bx+2by-2=0的公共弦長的最大值是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

平面上動點P到定點F(1,0)的距離比P到y(tǒng)軸的距離大1,則動點P的軌跡方程為(  )
A.y2=2xB.y2=4x
C.y2=2x或
y=0
x≤0
D.y2=4x或
y=0
x≤0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知半徑為1的動圓與圓(x-5)2+(y+7)2=16相切,則動圓圓心的軌跡方程是(    )
A.(x-5)2+(y+7)2="25"B.(x-5)2+(y+7)2=17或(x-5)2+(y+7)2=15
C.(x-5)2+(y+7)2="9"D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

兩圓的位置關系是(   )
A.相離B.相交C.內切D.外切

查看答案和解析>>

同步練習冊答案