已知幾何體A-BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(1)求此幾何體的體積V的大;
(2)求異面直線DE與AB所成角的余弦值;
(3)試探究在DE上是否存在點Q,使得AQ⊥BQ并說明理由.

【答案】分析:(1)由該幾何體的三視圖知AC⊥面BCED,且EC=BC=AC=4,BD=1,則體積可以求得.
(2)求異面直線所成的角,一般有兩種方法,一種是幾何法,其基本解題思路是“異面化共面,認定再計算”,即利用平移法和補形法將兩條異面直線轉(zhuǎn)化到同一個三角形中,結(jié)合余弦定理來求.還有一種方法是向量法,即建立空間直角坐標系,利用向量的代數(shù)法和幾何法求解.
(3)假設(shè)存在這樣的點Q,使得AQ⊥BQ.
解法一:通過假設(shè)的推斷、計算可知以O(shè)為圓心、以BC為直徑的圓與DE相切.
解法二:在含有直線與平面垂直垂直的條件的棱柱、棱錐、棱臺中,也可以建立空間直角坐標系,設(shè)定參量求解.這種解法的好處就是:1、解題過程中較少用到空間幾何中判定線線、面面、線面相對位置的有關(guān)定理,因為這些可以用向量方法來解決.2、即使立體感稍差一些的學(xué)生也可以順利解出,因為只需畫個草圖以建立坐標系和觀察有關(guān)點的位置即可.
以C為原點,以CA,CB,CE所在直線為x,y,z軸建立空間直角坐標系.設(shè)滿足題設(shè)的點Q存在,其坐標為(0,m,n),點Q在ED上,∴存在λ∈R(λ>0),使得,解得λ=4,∴滿足題設(shè)的點Q存在,其坐標為(0,,).
解答:解:(1)由該幾何體的三視圖知AC⊥面BCED,且EC=BC=AC=4,BD=1,
∴S梯形BCED=×(4+1)×4=10
∴V=•S梯形BCED•AC=×10×4=
即該幾何體的體積V為16.(3分)

(2)解法1:過點B作BF∥ED交EC于F,連接AF,
則∠FBA或其補角即為異面直線DE與AB所成的角.(5分)
在△BAF中,
∵AB=4,
BF=AF==5.
∴cos∠ABF==
即異面直線DE與AB所成的角的余弦值為.(7分)
解法2:以C為原點,以CA,CB,CE所在直線為x,y,z軸建立空間直角坐標系.
則A(4,0,0),B(0,4,0),D(0,4,1),E(0,0,4)
=(0,-4,3),=(-4,4,0),
∴cos<>=-
∴異面直線DE與AB所成的角的余弦值為

(3)解法1:在DE上存在點Q,使得AQ⊥BQ.(8分)
取BC中點O,過點O作OQ⊥DE于點Q,則點Q滿足題設(shè).(10分)
連接EO、OD,在Rt△ECO和Rt△OBD中

∴Rt△ECO∽Rt△OBD
∴∠EOC=∠OBD
∵∠EOC+∠CEO=90°
∴∠EOC+∠DOB=90°
∴∠EOB=90°.(11分)
∵OE==2,OD==
∴OQ===2∴以O(shè)為圓心、以BC為直徑的圓與DE相切.
切點為Q
∴BQ⊥CQ
∵AC⊥面BCED,BQ?面CEDB
∴BQ⊥AC
∴BQ⊥面ACQ(13分)
∵AQ?面ACQ
∴BQ⊥AQ.(14分)
解法2:以C為原點,以CA,CB,CE所在直線為x,y,z軸建立空間直角坐標系.
設(shè)滿足題設(shè)的點Q存在,其坐標為(0,m,n),
=(-4,m,n),=(0,m-4,n)
=(0,m,n-4),=(0,4-m,1-n)
∵AQ⊥BQ∴m(m-4)+n2=0①
∵點Q在ED上,∴存在λ∈R(λ>0)
使得
∴(0,m,n-4)=λ(0,4,m,1-n)⇒m=,n=
②代入①得(2=⇒λ2-8λ+16=0,解得λ=4
∴滿足題設(shè)的點Q存在,其坐標為(0,).
點評:本小題主要考查空間線面關(guān)系、面面關(guān)系、二面角的度量、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運算求解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD是邊長為4cm的正方形,直線AD垂直于以AB為直徑的圓所在的平面,點E是該圓上異于A,B的一點,連接AE、BE、DE、CE.
(1)求證:平面ADE⊥平面BCE;
(2)若∠BAE=30°,求幾何體CD-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四邊形ABCD是邊長為4cm的正方形,直線AD垂直于以AB為直徑的圓所在的平面,點E是該圓上異于A,B的一點,連接AE、BE、DE、CE.
(1)求證:平面ADE⊥平面BCE;
(2)若∠BAE=30°,求幾何體CD-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省廣州市海珠區(qū)高一(上)學(xué)業(yè)質(zhì)量監(jiān)測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知四邊形ABCD是邊長為4cm的正方形,直線AD垂直于以AB為直徑的圓所在的平面,點E是該圓上異于A,B的一點,連接AE、BE、DE、CE.
(1)求證:平面ADE⊥平面BCE;
(2)若∠BAE=30°,求幾何體CD-ABE的體積.

查看答案和解析>>

同步練習(xí)冊答案