如圖1,在直角梯形中,,,且
現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點,如圖2.
(1)求證:∥平面;
(2)求證:平面
(3)求點到平面的距離.
  
                                    圖

(1)利用線線平行證明線面平行;(2)利用線線垂直證明線面垂直;(3)利用等體積法求解點到面平面的距離

解析試題分析:

解:(1)證明:取中點,連結
在△中,分別為的中點, 所以,且
由已知, 所以,且.           3分
所以四邊形為平行四邊形. 所以.                4分
又因為平面,且平面,所以∥平面.         5分
(2)證明:在正方形中,
又因為平面平面,且平面平面
所以平面.  所以.               7分
在直角梯形中,,,可得
在△中,
所以.所以.    8分
所以平面.                                        10分
(3)解法一:由(2)知,平面
又因為平面, 所以平面平面.            11分
過點的垂線交于點,則平面
所以點到平面的距離等于線段的長度                12分   
在直角三角形中,
所以
所以點到平面的距離等于.                          14分
解法二:由(2)知,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD平面PAB

(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在四棱錐中,底面為矩
形,⊥平面,,上的點,若⊥平面

(1)求證:的中點;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本題共有2個小題,第(1)小題滿分6分,第(2)小題滿分6分.
如圖,已知正四棱柱的底面邊長是,體積是,分別是棱、的中點.

(1)求直線與平面所成的角(結果用反三角函數(shù)表示);
(2)求過的平面與該正四棱柱所截得的多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面,
,的中點.

(Ⅰ)求和平面所成的角的大。
(Ⅱ)證明平面;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱柱的底面是邊長為1的正方形,側棱垂直底邊ABCD四棱柱,,
E是側棱AA1的中點,求

(1)求異面直線與B1E所成角的大。
(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,

(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點,使// 平面?若存在,求出;若不存在,說明理由.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正三棱柱中,,的中點,是線段上的動點(與端點不重合),且.

(1)若,求證:;
(2)若直線與平面所成角的大小為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知△BCD中,∠BCD=,BC=CD=1,AB⊥平面BCD,∠ADB=,E、F分別是AC、AD上的動點,且

(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)當λ為何值時,平面BEF⊥平面ACD ?

查看答案和解析>>

同步練習冊答案