函數(shù)f(x)=log2(1-x)-log2(1-mx)(m≠1)是奇函數(shù),則m的值為
 
分析:根據(jù)函數(shù)f(x)是奇函數(shù)可得f(-x)=-f(x)恒成立,然后利用對(duì)數(shù)的運(yùn)算法則進(jìn)行化簡(jiǎn)變形,從而可求出m的取值.
解答:解:∵函數(shù)f(x)=log2(1-x)-log2(1-mx)(m≠1)是奇函數(shù),
∴f(-x)=-f(x)恒成立,
∴l(xiāng)og2(1+x)-log2(1+mx)=-log2(1-x)+log2(1-mx)恒成立,
log2
1+x
1+mx
=log2
1-mx
1-x
恒成立,
1+x
1+mx
=
1-mx
1-x
恒成立,
∴m=-1.
故答案為:-1.
點(diǎn)評(píng):本題考查了函數(shù)奇偶性的判斷,對(duì)數(shù)的運(yùn)算性質(zhì).奇偶性的判斷一般應(yīng)用奇偶性的定義和圖象,要注意先考慮函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱.對(duì)于對(duì)數(shù)函數(shù),如果底數(shù)a的值不確定范圍,則需要對(duì)底數(shù)a進(jìn)行分類討論,便于研究指數(shù)函數(shù)的圖象和性質(zhì).屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實(shí)數(shù)a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當(dāng)x∈[3,4]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)有三個(gè)命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案