已知數(shù)列{a
n}滿足a
1=0,a
2=2,且對任意m、n∈N
*都有a
2m-1+a
2n-1=2a
m+n-1+2(m-n)
2(1)求a
3,a
5;
(2)設(shè)b
n=a
2n+1-a
2n-1(n∈N
*),求 {b
n}的通項(xiàng)公式;
(3)設(shè)c
n=
(n∈N
*),S
n為數(shù)列{c
n}的前n項(xiàng)和,若存在n使S
n>M,求M的取值范圍.
分析:(1)由題意,令m=2,n=1,可得a
3=2a
2-a
1+2=6;再令m=3,n=1,可得a
5=2a
3-a
1+8=20.
(2)當(dāng)n∈N
*時,由已知以n+2代替m可得a
2n+3+a
2n-1=2a
2n+1+8于是[a
2(n+1)+1-a
2(n+1)-1]-(a
2n+1-a
2n-1)=8
即b
n+1-b
n=8,由此能求出{b
n}的通項(xiàng)公式.
(3)由a
2n+=1-a
2n-1=8n-2,令m=1可得a
n=
-(n-1)
2.那么a
n+1-a
n=
-2n+1=
-2n+1=2n,故a
n=n(n-1),故c
n=
==
-,由此能導(dǎo)出M的取值范圍.
解答:解:(1)由題意,令m=2,n=1,可得a
3=2a
2-a
1+2=6
再令m=3,n=1,可得a
5=2a
3-a
1+8=20(2分)
(2)當(dāng)n∈N
*時,由已知以n+2代替m可得
a
2n+3+a
2n-1=2a
2n+1+8于是[a
2(n+1)+1-a
2(n+1)-1]-(a
2n+1-a
2n-1)=8
即b
n+1-b
n=8
所以{b
n}是公差為8的等差數(shù)列(6分)
又{b
n}是首項(xiàng)為b
1=a
3-a
1=6,故b
n=8n-2(8分)
(3)由(1)(2)解答可知a
2n+1-a
2n-1=8n-2
另由已知(令m=1)可得
a
n=
-(n-1)
2.那么a
n-a
n-1=
-2n+3=
-2n+3=2n+2,
故a
n=n(n-1)(12分)
故c
n=
=,得c
n=
-,
故
Sn=1-+-++-=1-,(14分)
當(dāng)n∈N
*時,
1-∈[,1),由題意若存在n使
1->M則M<1,即M的取值范圍為M<1.(16分)
點(diǎn)評:本題考查數(shù)列中某項(xiàng)的求法、通項(xiàng)公式的計算和求解前n項(xiàng)和的方法,解題時要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}滿足:a
1=1且
an+1=, n∈N*.
(1)若數(shù)列{b
n}滿足:
bn=(n∈N*),試證明數(shù)列b
n-1是等比數(shù)列;
(2)求數(shù)列{a
nb
n}的前n項(xiàng)和S
n;
(3)數(shù)列{a
n-b
n}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}滿足
a1+a2+a3+…+an=2n+1則{a
n}的通項(xiàng)公式
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}滿足:a
1=
,且a
n=
(n≥2,n∈N
*).
(1)求數(shù)列{a
n}的通項(xiàng)公式;
(2)證明:對于一切正整數(shù)n,不等式a
1•a
2•…a
n<2•n!
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}滿足a
n+1=|a
n-1|(n∈N
*)
(1)若
a1=,求a
n;
(2)若a
1=a∈(k,k+1),(k∈N
*),求{a
n}的前3k項(xiàng)的和S
3k(用k,a表示)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2012•北京模擬)已知數(shù)列{a
n}滿足a
n+1=a
n+2,且a
1=1,那么它的通項(xiàng)公式a
n等于
2n-1
2n-1
.
查看答案和解析>>