(2012•泉州模擬)下列雙曲線中與橢圓
x2
4
+y2=1
有相同焦點的是(  )
分析:根據(jù)橢圓
x2
4
+y2=1
的方程算出橢圓的焦點為(±
3
,0),再算出A、B、C、D各項中的雙曲線的焦點坐標,進行對照即可得到正確的選項.
解答:解:橢圓
x2
4
+y2=1
中,a2=4,b2=1
∴c=
a2-b2
=
3
,得橢圓的焦點為(±
3
,0)
雙曲線
x2
4
-y2=1
的焦點為(±
5
,0),不符合題意;
雙曲線
y2
4
-x2=1
的焦點為(0,±
5
),不符合題意;
雙曲線
y2
2
-x2=1
的焦點為(±
5
,0),不符合題意;
∴只有B選項:雙曲線
y2
2
-x2=1
的焦點為(±
3
,0)符合題意
故選:B
點評:本題給出橢圓方程,求與圓焦點相同的雙曲線,著重考查了橢圓、雙曲線的標準方程與簡單幾何性質(zhì)等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)請寫出fn(x)的表達式(不需證明);
(Ⅱ)設fn(x)的極小值點為Pn(xn,yn),求yn;
(Ⅲ)設gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,試求a-b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)下列函數(shù)中,既是偶函數(shù),且在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},則A∩B為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)設函數(shù)f(x)=ax2+lnx.
(Ⅰ)當a=-1時,求函數(shù)y=f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-
12
的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導函數(shù).若a=1,試問:在區(qū)間[1,10]上是否存在k(k<100)個正數(shù)x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)設函數(shù)y=f(x)的定義域為D,若對于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究并利用函數(shù)f(x)=x3-3x2-sin(πx)的對稱中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=(  )

查看答案和解析>>

同步練習冊答案