19.已知函數(shù)$f(x)=lnx+\sqrt{x}+a(x-1)+b(a,b∈R,a,b$為常數(shù))的圖象經(jīng)過點(1,0),且在點(1,0)處的切線與直線$y=-\frac{2}{3}x$垂直.
(Ⅰ)求a、b的值;
(Ⅱ)證明:當(dāng)1<x<3時,$f(x)<\frac{9(x-1)}{x+5}$.

分析 (Ⅰ)將(1,0)代入f(x),求導(dǎo)則在(1,0)處切線斜率k=f′(1),由(1+$\frac{1}{2}$+a)×(-$\frac{2}{3}$)=-1,即可求得a和b的值;
(Ⅱ)構(gòu)造輔助函數(shù)$h(x)=f(x)-\frac{9(x-1)}{x+5}$,求導(dǎo),根據(jù)函數(shù)的單調(diào)性,求得函數(shù)h(x)在(1,3)單遞減,由h(1)=0,則$h(x)=f(x)-\frac{9(x-1)}{x+5}<0$,不等式成立.

解答 解:(Ⅰ)將(1,0)代f(x),可知:$0=ln1+\sqrt{1}+a(1-1)+b$①
∵求導(dǎo)$f'(x)=\frac{1}{x}+\frac{1}{{2\sqrt{x}}}+a$,則在(1,0)處切線斜率k=f′(1)=1+$\frac{1}{2}$+a,
則(1+$\frac{1}{2}$+a)×(-$\frac{2}{3}$)=-1,②
由①、②解得:a=0,b=-1,
a、b的值0,-1;…(6分)
(Ⅱ)證明:由(Ⅰ)知$f(x)=lnx+\sqrt{x}-1$令$h(x)=f(x)-\frac{9(x-1)}{x+5}$
則當(dāng)1<x<3時,$h'(x)=\frac{1}{x}+\frac{1}{{2\sqrt{x}}}-\frac{54}{{{{(x+5)}^2}}}=\frac{{2+\sqrt{x}}}{2x}-\frac{54}{{{{(x+5)}^2}}}$,
∵x>1時,$2\sqrt{x}=2\sqrt{x•1}<x+1$,
∴$h'(x)=\frac{{2+\sqrt{x}}}{2x}-\frac{54}{{{{(x+5)}^2}}}<\frac{x+5}{4x}-\frac{54}{{{{(x+5)}^2}}}=\frac{{{{(x+5)}^3}-216x}}{{4x{{(x+5)}^2}}}$,…(8分)
令p(x)=(x+5)3-216x,則p'(x)=(x+5)3-216x=3(x+5)2-216,
∵1<x<3∴p'(x)=3(x+5)2-216<3(3+5)2-216<0,
∴p(x)=(x+5)3-216x在(1,3)內(nèi)為減函數(shù),
∵p(1)=(1+5)3-216=0,
∴當(dāng)1<x<3時,$h'(x)=\frac{{2+\sqrt{x}}}{2x}-\frac{54}{{{{(x+5)}^2}}}<\frac{x+5}{4x}-\frac{54}{{{{(x+5)}^2}}}=\frac{{{{(x+5)}^3}-216x}}{{4x{{(x+5)}^2}}}<0$,
∴$h(x)=f(x)-\frac{9(x-1)}{x+5}$在(1,3)內(nèi)為減函數(shù),
∵h(1)=0,
∴當(dāng)1<x<3時,$h(x)=f(x)-\frac{9(x-1)}{x+5}<0$,
∴當(dāng)1<x<3時,$f(x)<\frac{9(x-1)}{x+5}$.…(12分)

點評 本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性及最值,利用導(dǎo)數(shù)求函數(shù)的切線方程,考查導(dǎo)數(shù)與不等式的綜合應(yīng)用,考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={0,1,2},B={1,m},若A∩B=B,則實數(shù)m的取值集合是(  )
A.{0}B.{2}C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{AB}$、$\overrightarrow{AC}$、$\overrightarrow{AD}$滿足$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AD}$|=1,E、F分別是線段BC、CD的中點,若$\overrightarrow{DE}$•$\overrightarrow{BF}$=-$\frac{5}{4}$,則向量$\overrightarrow{AB}$與$\overrightarrow{AD}$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過拋物線C:y2=2px(p>0)的焦點F的直線l與拋物線交于M,N兩點,若$\overrightarrow{MF}$=4$\overrightarrow{FN}$,則直線l的斜率為( 。
A.±$\frac{3}{2}$B.±$\frac{2}{3}$C.±$\frac{3}{4}$D.±$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知α=sin150°,b=tan60°,c=cos(-120°),則a、b、c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.梯形ABCD中,DC∥AB,DC=2,AB=4,AD=BC=3,則$\overrightarrow{AC}•\overrightarrow{BD}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F(-c,0)(c>0),作傾斜角為$\frac{π}{6}$的直線FE交該雙曲線右支于點P,若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),且$\overrightarrow{OE}$•$\overrightarrow{EF}$=0,則雙曲線的離心率為( 。
A.$\frac{\sqrt{10}}{5}$B.$\sqrt{3}$+1C.$\frac{\sqrt{10}}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個化肥廠生產(chǎn)甲、乙兩種肥料,生產(chǎn)一車皮甲種肥料需要磷酸鹽4噸、硝酸鹽18 噸;生產(chǎn)一車皮乙種肥料需要磷酸鹽1噸、硝酸鹽15噸.已知生產(chǎn)一車皮甲種肥料產(chǎn)生的利 潤是10萬元,生產(chǎn)一車皮乙種肥料產(chǎn)生的利潤是5萬元.現(xiàn)庫存磷酸鹽10噸、硝酸鹽66 噸.如果該廠合理安排生產(chǎn)計劃,則可以獲得的最大利潤是
( 。
A.50萬元B.30萬元C.25萬元D.22萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若x,y滿足條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+6≥0}\\{x≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=x2+y2的最小值是(  )
A.$\sqrt{2}$B.2C.4D.$\frac{68}{9}$

查看答案和解析>>

同步練習(xí)冊答案